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Towards Fast and Accurate Image-Text Retrieval
with Self-Supervised Fine-Grained Alignment

Jiamin Zhuang, Jing Yu∗, Yang Ding, Xiangyan Qu, Yue Hu

Abstract—Image-text retrieval requires the system to bridge
the heterogenous gap between vision and language for accurate
retrieval while keeping the network lightweight-enough for effi-
cient retrieval. Existing trade-off solutions mainly study from
the view of incorporating cross-modal interactions with the
independent-embedding framework or leveraging stronger pre-
trained encoders, which still demand time-consuming similarity
measurement or heavyweight model structure in the retrieval
stage. In this work, we propose an image-text alignment module
SelfAlign on top of the independent-embedding framework,
which improves the retrieval accuracy while maintains the
retrieval efficiency without extra supervision. SelfAlign contains
two collaborative sub-modules that force image-text alignment at
both concept level and context level by self-supervised contrastive
learning. It doesn’t require cross-modal embedding interactions
during training while maintaining independent image and text
encoders during retrieval. With comparable time cost, SelfAlign
consistently boosts the accuracy of state-of-the-art non-pre-
training independent-embedding models respectively by 9.1%,
4.2% and 6.6% in terms of R@sum score on Flickr30K, MS-
COCO 1K and MS-COCO 5K datasets. The retrieval accuracy
also outperforms most existing interactive-embedding models
with orders of magnitude decrease in retrieval time. The source
code is available at: https://github.com/Zjamie813/SelfAlign.

Index Terms—Fast image-text retrieval, concept-level cross-
modal alignment, context-level cross-modal alignment, self-
supervised learning.

I. INTRODUCTION

IMAGE-TEXT retrieval (ITR) is a long-standing task that
requires an AI agent to retrieve semantically relevant im-

ages given a text query and vice versa. The key challenge
of ITR is to bridge the heterogeneous gap between low-level
visual appearance and high-level abstract language and align
their representations. It is also a fundamental problem for a
series of vision and language tasks [1, 20, 27]. In real-world
scenarios, besides effective cross-modal alignment for accurate
retrieval, the retrieval system also strives to make real-time
retrieval possible with low latency. Therefore, how to balance
the accuracy and efficiency becomes a key challenge for large-
scale image-text retrieval.

Most of the previous works make much effort on either
retrieval efficiency or retrieval accuracy. Early independent-
embedding approaches [10, 23, 30] (Figure 1(a)) encode each
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Fig. 1. Illustration of different image-text retrieval approaches. (a)
Independent-embedding approach. (b) Interactive-embedding approach. (c)
Late-interaction approach. (d) Intra-interactive embedding approach. (e) Two-
stage approach. (f) Independent-embedding approach with SelfAlign.

image and text independently into global embeddings. Then
image-text similarity is computed by directly measuring the
distance between their global embeddings in a common se-
mantic space. Since there are no interactions between texts and
images, independent-embedding approaches allow offline data
embedding extraction and linear computational complexity
[26] for online retrieval. Hence such approaches are widely
applied in real-world large-scale retrieval. However, their re-
trieval accuracy is not satisfactory since such a global embed-
ding alignment strategy cannot guarantee fine-grained content
alignment. To alleviate this problem, interactive-embedding
approaches [5, 21, 31] (Figure 1(b)) are proposed for fine-
grained image-text retrieval by aligning visual objects in an
image with words in a text by cross-modal attention mecha-
nism. However, for each query, all the retrieved samples need
complex attention computation to encode their embeddings,
which is quite time-consuming and not scalable to large-
scale online retrieval scenarios. How to leverage the advan-
tages of independent-embedding approaches and interactive-
embedding approaches to achieve both high accuracy and
practical efficiency becomes an essential problem.

Current progress [12, 28, 32] aims to introduce
computation-efficient interactions into the independent-
embedding framework. The typical solutions can be
divided into three types: measuring fine-grained word-
object similarities instead of global embedding similarities

ar
X

iv
:2

30
8.

14
00

9v
1 

 [
cs

.C
V

] 
 2

7 
A

ug
 2

02
3

https://github.com/Zjamie813/SelfAlign


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

(a.k.a late-interaction approach as shown in Figure 1 (c))
[26, 28], adopting independent-embedding approaches for
coarse retrieval first and then using interactive-embedding
approaches for finer retrieval (a.k.a. two-stage approach as
shown in Figure 1 (e)) [12, 29], and exploiting stronger
intra-modal interactive encoder instead of the time-consuming
cross-modal interactive encoder (a.k.a. intra-interactive
embedding approach as shown in Figure 1 (d)) [17, 32].
However, compared with independent-embedding approaches,
these trade-off solutions still demand extra time cost in
the retrieval stage due to complex similarity measurement,
cross-modal embedding interactions, or heavyweight encoder
structure. They sacrifice the retrieval efficiency for the benefits
of fine-grained feature learning.

In this paper, to enable fine-grained image-text alignment
for accurate retrieval while maintain high retrieval efficiency
as the independent-embedding models, we propose a novel
trade-off strategy to learn fine-grained image-text alignment
by contrastive-based embedding mapping. The advantage of
contrastive-based embedding mapping is that it does not
require cross-modal fusion during the inference stage. In our
approach, we achieve embedding alignment between images
and texts by a new module, named as SelfAlign. Based on
the backbone of independent-embedding models, SelfAlign
aims to align image and text embeddings from local to global
by multi-level self-supervised contrastive learning. In this
way, independent-embedding models injected with SelfAlign
enhance original global embedding with more accurate fine-
grained semantic alignment across different modalities. In the
inference stage, the baseline model without the SelfAlign
module conducts image and text encoding independently while
maintains fine-grained embedding alignment ability. There-
fore, SelfAlign enables independent-embedding models to
achieve superior retrieval accuracy without sacrificing effi-
ciency.

Specifically, SelfAlign is designed to explore fine-grained
correspondence via mining rich visual and textual semantic
content in different layers of the independent-embedding mod-
els. There are two sub-modules in SelfAlign responsible for
semantic alignment at concept level and context level: (1) To
capture the pair-wise correspondence among visual region and
textual words, Local Concept Alignment (LCA) sub-module
is first proposed to learn the concept-level alignment in the
lower layer. (2) Since the semantically similar concepts have
different semantics in different contexts, Context Relation
Alignment (CRA) sub-module is further proposed to be in-
jected into higher embedding layer to achieve context-level
alignment. As a result, independent-embedding models with
SelfAlign learn fine-grained alignment between images and
texts from local semantics to global semantics progressively.

The main contributions are summarized as follows: (1) We
introduce a novel trade-off strategy for image-text retrieval to
learn fine-grained alignment by contrastive-based embedding
mapping. The contrastive-based embedding mapping aligns
the fine-grained image and text embeddings via cross-modal
contrastive learning during the training stage without requiring
cross-modal fusion during the inference stage. Thus, our
approach has the benefits of both the interactive-embedding

models and the independent-embedding models, i.e., en-
hancing fine-grained alignment learning while preserving the
independent-embedding framework for efficient retrieval. (2)
We propose a fine-grained image-text alignment module Self-
Align to achieve the trade-off strategy. Two sub-modules
of SelfAlign conduct concept alignment and context align-
ment via cluster-based contrastive learning and global-to-local
contrastive learning. Therefore, SelfAlign equips the global
embedding of the independent-embedding models with multi-
level fine-grained alignment to improve the retrieval accuracy
without extra supervision. (3) SelfAlign is a generic mod-
ule that can be injected into various independent-embedding
models. We incorporate SelfAlign with two representative
independent-embedding models. Experimental results show
that SelfAlign consistently boosts the accuracy of state-of-
the-art independent-embedding models respectively by 9.1%,
4.2% and 6.6% in terms of R@sum on Flickr30K, MS-COCO
1K and MS-COCO 5K. The performance also outperforms
most existing interactive-embedding models with orders of
magnitude decrease of retrieval time.

II. RELATED WORKS

A. Image-Text Retrieval
Existing works can be categorized into two types:

the independent-embedding approaches and the interactive-
embedding approaches. The former approaches [10, 11, 23,
30, 45] aim to project the images and texts into a com-
mon semantic space, so image-text pairs can be compared
directly via simple distance metrics. The architecture of main-
stream independent-embedding approaches is an independent-
embedding learning structure consisting of an image encoder
and a text encoder, and they adopt ranking loss [10] for
metric learning. Though these approaches have achieved some
promising performance, they are still limited since they cannot
conduct interactive encoding process and thus fail to provide
fine-grained alignment between images and texts.

Interactive-embedding approaches [5, 16, 18, 21, 25, 31]
aim to learn fine-grained image-text matching by complex
object and word interactions with cross-modal attention mech-
anism. Lee et al. [21] compute the similarities between regions
and words, and only count the region-word pairs with high
relevance. Some works [5, 16, 25] propose hierarchical interac-
tion methods for progressively extracting the complicated cor-
respondence. Recently, Qu et al. [31] propose a dynamic router
with the capability to choose the different interactive mode
for each image-text pair and achieves state-of-the-art perfor-
mance. Nevertheless, the quadratic computational complexity
takes unavoidable computational cost for retrieval. In this
paper, we propose a model-agnostic module with multi-level
self-supervised learning strategy for independent-embedding
models to learn the fine-grained semantic correspondences,
instead of time-consuming attention mechanisms. Thus, the
independent-embedding backbones achieve superior retrieval
accuracy without sacrificing efficiency.

B. Trade-Off Image-Text Retrieval Models
To strike a balance between retrieval efficiency and accu-

racy, there are almost three types of approaches that have
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been proposed recently: late-interaction approaches [26, 28],
two-stage approaches [12, 29], and intra-interactive embedding
approaches [17, 34]. The late-interaction approaches retain the
independent encoding architecture and perform lightweight
token-wise interactions only in the late scoring stage [26,
28]. Their retrieval speed is still slower than independent-
embedding methods since the independent-embedding meth-
ods only require the global embedding for similarity com-
putation. Secondly, two-stage approaches [12, 29] first adopt
independent-embedding models for coarse-level retrieval and
then utilize interactive-embedding models for finer retrieval
to trade-off between efficiency and accuracy. But they are
still slower than independent-embedding models due to the
existence of the re-rank stage. Lastly, the intra-interactive
embedding approaches [17, 34] take two independent encoders
but they require large-scale image-text pairs for training and
stack a few Transformer blocks [37] to build stronger en-
coders. For example, ALIGN [17] leverages two transformers
encoders with 400M parameters and 1.8B image-text pairs
for training. Though they achieve surprising performance, the
inevitable huge computation cost in training and deploying
such massive-scale models limit their development. Contrast
to these three types of trade-off methods, without sacrificing
the retrieval time or requiring extra training data, our proposed
module improves the accuracy by enhancing image and text
representations of fine-grained information.

C. Self-Supervised Contrastive Learning
Self-supervised learning [6, 35, 46] aims at learning fea-

tures without manual annotations. Recent approaches based
on contrastive learning have achieved remarkable progress in
visual domain. Current contrastive learning can be divided
into two groups: individual-based contrastive learning [6, 13]
and cluster-based contrastive learning [3, 4]. Individual-based
contrastive learning [6, 13] considers each image in a dataset
as its own class [4], and brings the embedding of different
views from the same image closer and push embeddings from
different images far apart using instance-level contrastive loss.
This approach introduces the individual-level discrimination
but requires a large batch size for negatives storage. Cluster-
based contrastive learning [3, 4] encourages the image em-
beddings to be closer to their assigned prototypes obtained by
clustering algorithm, and far from negative prototypes. This
approach introduces the group-level discrimination between
instances. However, current works only construct image-level
representation learning and lack of fine-grained information
learning such as the object information in images.

To learn local information, some researchers [22, 41] con-
struct local level contrastive learning to learn visual pixel-
level semantic information. Moreover, some works [2, 14]
maximize global-local mutual information and aim to learn
the shared context information across patches/tokens. Here, we
aim to learn the fine-grained correspondences between images
and texts without detail annotations, and our word-object
alignment learning and context-level alignment learning were
inspired by these local contrastive learning works. Differently,
the contrastive reasoning should be performed across modali-
ties instead of cross-image views, and thus the learning process

is not fully symmetric since the local semantic information
involved in image-text pairs is not exactly equivalent to that
of two augmentations of an image.

III. METHODOLOGY

We propose a module SelfAlign to explore the multi-
grained correspondences in the different layers of independent-
embedding models. Independent-embedding models mainly
consist of a visual encoder and a textual encoder, as shown in
Figure 1 (a). Though the encoders are various from adopting
different encoding architectures such as GCN [19] and self-
attention [30, 45], the encoding process for each modality
typically includes three stages as shown in the Figure 2
(a), visual object encoding and textual word encoding stage,
visual and textual context encoding stage and visual and
textual embedding aggregation stage. However, independent-
embedding models only conduct global image-text alignment
at the embedding aggregation stage and overlook fine-grained
alignment in the first two encoding stages. To improve their
retrieval accuracy, we design two sub-modules in SelfAlign
injected in the first two encoding stages respectively: 1) Local
Concept Alignment (LCA) sub-module for local conceptual
level alignment between visual objects and textual words,
2) Contextual Relation Alignment (CRA) sub-module for
contextual level alignment.

In this section, we first describe the single modal embedding
extraction approaches in the independent-embedding models
in Section III-A. In Section III-B, we introduce the LCA
sub-module, which learns the concept-level word-object cor-
respondences at the object and word encoding stage. We then
introduce the CRA sub-module in Section III-C to explore
context-level alignment in the context encoding stage. Since
SelfAlign is model-agnostic and applicable to independent-
embedding models, we case study on two representative
baseline models, VSRN [23] and CAMERA [31], which is
introduced in Section III-D and Section III-E, respectively.

A. Single-Modal Embedding Extraction

Image Embedding Extraction. For each input image I ,
recent works [21, 23] usually employ an off-the-shelf object
detection model, such as Faster R-CNN [33], to detect M
objects O = {oi}Mi=1, where each object oi is represented by an
object feature embedding oi ∈ Rdo . Then a linear projection
is utilized to transform oi into a h-dimensional embedding.
Then the embedding of the image is represented by a set of
object embeddings V l =

{
vl
i

}M

i=1
. We name this encoding

process as visual object encoding stage. Then different works
utilize various approaches such as GCN [23] or Transformers
[23] to model the relationships between objects and obtain
contextualized object embeddings, named as visual context
encoding stage. Here, we omit the computation details and
simplify them as the visual context encoder, and the output of
the context encoder is denoted as visual context embeddings
V c = {vc

i }
M
i=1. Finally, the visual global embedding V g is

obtained by integrating the context embeddings V c, which is
named as visual embedding aggregation stage.
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Fig. 2. The overview of SelfAlign applied to independent-embedding models. SelfAlign consists of two sub-modules: Local Concept Alignment sub-module
and Contextual Relation Alignment sub-module. (a) illustrates the hierarchical encoding stage of independent-embedding models and the inject position for
the two sub-modules of SelfAlign. (b) describes the Local Concept Alignment sub-module and (c) describes the Contextual Relation Alignment sub-module.

Text Embedding Extraction. For each input text T , the
word-level embeddings W = {wi}Di=1 is generally obtanined
from the pre-trained word embeddings [21, 23], such as
BERT [8]. Then an embedding layer is also employed to
transform wi to a h-dimensional vector. The word embedding
set is denoted as T l =

{
tli
}D

i=1
. We name this encoding

process as the textual word encoding stage. Then different
works utilize different approaches, such as GRU [21, 23]
and Transformer [17, 30], to capture the contextualized word
embeddings, named as the textual context encoding stage. We
denote the output of this stage as textual context embeddings
T c = {tci}

D
i=1, where D denotes the number of the words

in the sentence. The final global embedding T g is obtained
by aggregating the context embeddings T c, named as texual
embedding aggregation stage.

B. Local Concept Alignment Sub-Module

Local Concept Alignment (LCA) sub-module is injected
into the object and word encoding layer of the baseline model
and aims to force the consistency between the visual and
textual concept embeddings, as presented in Figure 2 (b). We
regard the object regions as the visual concepts and the whole
words in the sentences as textual concepts to make full use of
information in the whole sentence. Since there are no word-
object pair annotations, a word-object correspondence discov-
ery strategy is first proposed to build pseudo word-object
correspondences in LCA. Then a cluster-based fine-grained
alignment is designed to force the consistency between the
selected matched word-object pair by comparing their cluster
assignments. Though there are no annotations of the word-

object pairs, our concept alignment is under the constraint of
global image-text matching supervision.

Word-Object Correspondence Discovery. We take the
visual object embeddings V l and word embeddings T l as the
input of the LCA sub-module. Since there are no word-object
annotations, we first estimate the word-object correspondences
from image-text pairs. Specifically, we compute the cosine
similarities between the words and objects and choose the most
similar object as the correspondence for each word. Notably,
since the texts of an image is the linguistic expression of the
image itself [24, 48], each word is able to find at least one
matched object region given an image-text pair. We cannot
guarantee each object in the image has corresponding words
in the text. Therefore, we align each word to an object rather
than the inverse direction.

Formally, given the i-th word embedding tli, we compute its
cosine similarities with the region embeddings V l and apply
the argmax operation to select the most matched object region:

vl
j+ = argmax

j∈[1,M ]

cos
(
tli,v

l
j

)
(1)

where vj+ is the selected matched image object region for
ti and cos(·, ·) represents the cosine similarity function. We
utilize the whole word-object pairs obtained by all words in
a batch as pseudo-supervised alignment information for local
concept-level alignment.

Cluster-based Fine-grained Alignment. Cluster-based
fine-grained alignment aims to enforce the consistency be-
tween each word embedding and the matched object embed-
ding selected by the word-object correspondence discovery
strategy. Inspired by the recent success of self-supervised
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learning [6, 35], we treat the selected matched word-object
pair as two different views depicting the same conceptual
semantic and utilize cluster-based contrastive learning [3, 4] to
align their embeddings across different modalities. The basic
idea lies in that we cluster object region embeddings to form
a concept dictionary, where each cluster center represents a
concept. The embeddings of the cluster centers are more stable
and representative to represent concepts compared with the
object region embeddings in each image. Each region embed-
ding and word embedding are then mapped to the concept
dictionary and represented by concept assignments. In this
way, we represent regions and words at the semantic-consistent
concept level instead of the expression-variant instance level.
After that, we utilize cross-prediction to align the region and
word embeddings. Notably, there is an alternative solution
to align the embeddings, named as individual-based con-
trastive learning [6, 13]. However, individual-based contrastive
learning requires a large number of paired negative-positive
samples, and it is challenging to select the appropriate negative
samples without ground-truth word-object annotations. Thus,
to efficiently and effectively align the word-object embeddings,
we adopt cluster-based contrastive learning without requiring
numerous computations. It is an alternative to contrasting
multiple views by comparing their cluster assignments instead
of their instance-level embeddings [4].

The cluster-based fine-grained alignment process contains
two main steps: (1) We first perform concept codebook con-
struction to obtain the concept assignments, where the concept
codebook is a collection of learnable prototypes based on
object region embeddings. (2) Then cross-prediction learning
is conducted from word concept assignments to object concept
assignments to align the word-object embeddings.

Step 1: concept codebook construction. To learn the concept
codebook and let the learning process of cluster centers be
synchronous with the whole network, we use the online
clustering method as in [4]. Following [4], we define the
trainable concept codebook C = {ci}Ki=1, where K represents
the number of concept centers and each center ci is a h-
dimensional vector as visual and textual concept embeddings.

Step 2: cross-prediction learning. We use cross-entropy loss
between object and word concept assignments to set up this
cross-prediction problem. Firstly, given the concept codebook,
the visual concept assignment vP

i ∈ RK for the object
embedding vl

i can be obtained by mapping vl
i to the concept

codebook. Each scalar pk
i in vP

i represents the probability that
vi belongs to the k-th prototype ck and is obtained by taking
a softmax of the cosine similarity of vl

i and ck as follows:

pk
i =

exp
(
cos

(
vl
i, ck

)
/τ1

)∑K
k=1 exp

(
cos

(
vl
i, ck

)
/τ1

) (2)

where τ1 is a temperature parameter. Similarly, the word
assignment is computed by mapping each word embedding
tli to the concept codebook, and each scalar of the probability
that tli belongs to the k-th prototype, denoted as qk

i .

Then cross-prediction from word concept assignments to
the corresponding object concept assignments is performed to
align the selected word-object pair. The prediction problem is

optimized by the cross-entropy loss as follows:

Li = −
K∑

k=1

pk
j+ log qk

i (3)

where pk
j+ is the object concept assignment of the matched

visual object embedding vl
i+ . Finally, we aggregate the loss

values in Equation 3 over all the words D and result in the
following loss function to optimize the feature encoders:

LLCA =
1

D

D∑
i=1

Li (4)

C. Contextual Relation Alignment Sub-Module

Since semantically similar concepts have different semantics
in different contexts, Context Relation Alignment (CRA) sub-
module is further proposed to capture context-level semantic
correspondences in the context embedding layer, as presented
in Figure 2 (c). CRA first performs shared context enhance-
ment to capture the shared context-level information and
suppress the irrelevant information between the images and
texts. Shared context alignment is then conducted to achieve
contextual-level alignment.

Shared Context Enhancement. Given the visual context
embeddings V c = {vc

i }
M
i=1 and text context embeddings

T c = {tci}
D
i=1, we acquire the global context embedding

vc
g and tcg for contextual relation alignment by adopting

the average-pooling over V c and T c respectively. Here, we
design two symmetric contrastive mechanism to learn the
shared context information from visual perspective and textual
perspective: contrasting between the visual global context
embedding and the textual local context embeddings, denoted
as V-global/T-local and contrasting between the textual global
context embedding and the visual local context embeddings,
denoted as T-global/V-local. Under the global supervision from
one modality, the relevant local semantics of objects and
relationships in the other modality will be strengthened while
irrelevant semantics will be weakened.

Formally, a fully connected layer is first utilized to map the
global context embedding into the corresponding local context
space as the global supervision:

tcs = σ
(
BN

(
W1t

c
g + b1

))
vc
s = σ

(
BN

(
W2v

c
g + b2

)) (5)

where σ is the ReLU activation and BN is the batch normaliza-
tion. W1, W2, b1 and b2 are learnable parameters. Meanwhile,
the batch normalization and ReLU activation operations are
employed on the local contextual embeddings vc

i , t
c
i , and they

are then denoted as v∗
i , t

∗
i in contrastive learning.

Given the global context and local context embeddings, the
T-global/V-local contrastive learning and V-global/T-local con-
trastive learning is conducted in parallel. For T-global/V-local
contrastive learning, we consider the textual global supervision
embedding tcs and the visual local contextual embeddings v∗

i

that come from an image-text pair as a positive sample, while
the embeddings from unpaired image-text pairs as negative
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samples. Then we define the T-global/V-local contrastive loss
as:

Ltg = − 1

M

M∑
i=1

log
exp (cos (tcs,v

∗
i ) /τ2)∑N

j=1 exp
(
cos

(
tcs, ṽ

∗
j

)
/τ2

) (6)

where τ2 is a temperature hyper-parameter and M is the
number of visual regions.

{
ṽ∗
j

}N

j=1
is a set of negative visual

local embeddings. N is the number of negatives. Similarly,
the V-global/T-local contrastive loss is defined as:

Lvg = − 1

D

D∑
i=1

log
exp (cos (vc

s, t
∗
i ) /τ2)∑N

j=1 exp
(
cos

(
vc
s, t̃

∗
j

)
/τ2

) (7)

where
{
t̃∗j
}N

j=1
is negative textually local context embeddings.

D is the number of textual words. We select the N negative lo-
cal embeddings that are most similar to the global embedding
of the other modality ranked by cosine similarity. As a result,
these samples are hard negative samples which are beneficial
for learning high-quality representations of the anchor sample
[47]. The loss for shared context enhancement is defined as:

Lcs =
1

2
(Ltg + Lvg) (8)

Shared Context Alignment. Shared context alignment
aims to perform contextual level alignment based on the
enhanced global context embedding and local context embed-
dings. Specifically, both of the V-global/T-local and the T-
global/V-local contrastive learning enhance the global context
embeddings vc

g and tcg from local and global perspectives and
introduce a paired final global context embeddings for con-
text alignment. Taking T-global/V-local contrastive learning
as an example, it enables the encoder to filter out irrelevant
local contextual information which is not aligned with global
contextual information of the other modality. We further use
average-pooling on visual enhanced local context embeddings
{v∗

i }
M
i=1 to form the final visual context embedding, denoted

as the visual local-aggregated context embedding v∗
g . Given

the text global context embedding tcg and its enhanced global
context embedding tcs, we perform the fusion operation as
follows:

tcf = g · tcs + (1− g) · tcg
g = sigmoid

(
Wg

[
tcs, t

c
g

]
+ bg

) (9)

where tcf denotes the textual global-fused context embedding
obtained by the text global context information tcg and its
enhanced global context information tcs from visual modality.
g is a gating value to adaptively balance the importance of tcg
and tcs. [·, ·] means the concatenation operation.

Similarly, as for V-global/T-local contrastive learning, we
obtain the textual local-aggregated context embedding t∗g
based on {t∗i }

D
i=1. By fusing vc

g and vc
s, we get the visual

global-fused context embedding vc
f similar to Equation 9.

Based on these final global context embeddings, we obtain
the contextual-level matching score for a given image-text pair
(I , T ), which is defined as:

Sc(I, T ) =
1

2

(
cos(tcf ,v

∗
g) + cos(vc

f , t
∗
g)
)

(10)

Then we use the hinge-based triplet ranking loss [10] to
enforce the contextual similarity of matched image-text pair
to be higher than unmatched ones for contextual alignment:

Lca = max
(
0, α+ Sc

(
I , T̃

)
− Sc (I ,T )

)
+max

(
0, α+ Sc

(
Ĩ ,T

)
− Sc (I ,T )

) (11)

where T̃ = argmaxd̸=T s(I, d) and Ĩ = argmaxj ̸=I s(j, T )
are the hardest negatives in a mini-batch for a positive pair (I ,
T ), and α is the margin parameter. Taking the loss objective
for shared context enhancement in Equation 8 together, we
define the total loss objective in CRA sub-module as:

LCRA = Lcs + Lca (12)

D. SelfAlign with Typical Independent-Embedding Models

To prove the effectiveness of our module SelfAlign, we
case study on two typical independent-embedding models, the
widely compared model VSRN [23] and the state-of-the-art
independent-embedding model CAMERA [30].

VSRN with SelfAlign. For image encoding, VSRN [23]
uses the object embeddings from an object detection model as
visual inputs, followed by an FC layer and a graph convolution
network with four layers to perform object-relation reasoning.
Finally, VSRN utilizes a GRU unit to obtain the visual global
embedding. For text encoding, VSRN exploits a word embed-
ding layer to encode word-level embeddings and adopts an
LSTM to obtain the contextualized word embeddings. Finally,
VSRN utilizes the final hidden state of the LSTM as the
textual global embedding. For the loss function, VSRN utilizes
the sum of a matching loss on global embeddings via triplet
ranking loss and a generation objective from images to texts
to jointly align the images and texts. Here, we denote the loss
function of VSRN as Lbase. We take the outputs of the FC
layer in the image encoder and the outputs of word-embedding
layer in the text encoder into LCA sub-module. And we regard
the outputs of the last GCN layer and the LSTM as the input
of the CRA sub-module.

CAMERA with SelfAlign. For the image encoder, CAM-
ERA concatenates the object embeddings and the position
embeddings of each object as visual inputs and an FC layer
is followed to obtain the visual object embeddings. The word
embedding inputs are obtained from the output of pre-trained
BERT [8]. Then CAMERA adopts a self-attention layer to
perform relation reasoning for image and text respectively. For
the loss function, CAMERA adopts the sum of a triplet ranking
loss on global embeddings and a diversity regularization loss
for cross-modal alignment and the summarization of multi-
view descriptions. Here, we also denote the loss function of
CAMERA as Lbase. And we take the outputs of the FC layer
as LCA sub-module inputs, taking the outputs of the self-
attention layer as the inputs of the CRA sub-module.

E. Model Training and Inference

The final training loss for baseline models with SelfAlign
is defined as:

L = Lbase + LLCA + LCRA (13)
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where Lbase means the loss objectives of the baseline model.
LLCA and LCRA are defined in Equation 4 and Equation 12.

In the inference stage, the similarity for each image-text pair
of baseline with SelfAlign is computed as follows:

S(I, T ) = Sb(I, T ) + Sc(I, T ) (14)

where Sb(I, T ) is the similarity score evaluated by the baseline
model, and Sc(I, T ) denotes our proposed contextual-level
similarity score according to Equation 10. It is noteworthy
that since our module keeps the advantage of the independent
encoding framework of the independent-embedding models,
the queried image or text embeddings can pre-computed offline
before the inference stage.

IV. EXPERIMENT

Datasets. We conduct extensive experiments on two bench-
mark datasets in image-text retrieval: Flickr30K [48] and MS-
COCO [24]. Flickr30K consists of 31,783 images collected
from the Flickr website and each image is associated with 5
sentences. Following the settings in [10, 21], we utilized 1,000
images for validation, 1,000 images for testing, and the rest for
training. MS-COCO contains 123,287 images with 5 captions
for each image. Following [10, 21], we take 113,287 images
for training, 5,000 images for validation, and 5,000 images for
testing, and the results are reported by both averaging over 5
folds of 1K test set images and testing on the full 5K test
images as in [10, 21].

Evaluation Metrics. To compare with the state-of-the-art
models, we adopt the commonly used evaluation metrics in
all datasets as [10, 21, 23]. Namely, we adopt Recall at K
denoted as R@K to evaluate the performance on both text
retrieval (retrieve the most related text given an image query)
and image retrieval (retrieve the most related image given a
text query) tasks. R@K means the percentage of queries that
are correctly matched in the top-K ranking list. We report
R@1, R@5, R@10 for all datasets as in [23]. Besides, to
comprehensively reveal the overall retrieval performance, we
also report another metric R@sum as in [5], defined as the
summation of all R@K values in both retrieval tasks.

Implementation Details. To perform a fair comparison, for
VSRN and CAMERA, we completely preserve their network
structures and model settings such as training batch size
and other model-related hyper-parameter settings as stated in
their original work. We only inject our module into the two
baselines as introduced in Section III-D. For both baseline
models, the softmax temperature τ1 in the LCA sub-module
is set to 0.1 as in [4]. The number of concept classes K is
set to 1024, and the number of negative samples N and the
softmax temperature τ2 in CRA sub-module are set to 512 and
0.7. All of our experiments are conducted on a single NVIDIA
Tesla GPU with 24GB memory and implemented in PyTorch.

A. State-of-the-Art Comparison

To verify the effectiveness of SelfAlign, we compare our
results with the state-of-the-art models on Flickr30k and MS-
COCO in Table I. This table is split into three blocks, from
top to bottom, representing independent-embedding models,

interactive-embedding models, and our models (i.e. VSRN
with SelfAlign and CAMERA with SelfAlign), respectively.
Notably, for a fair comparison with the interactive-embedding
models, following [23], we achieve our ensemble models by
averaging the predicted similarity scores of the two different
models obtained by utilizing different seeds for training.

From the comparison between the first block and last block
in Table I, we conclude that our module SelfAlign can remark-
ably improve baseline independent-embedding models on all
the metrics, which proves the effectiveness of learning fine-
grained correspondences of word-object and global-to-local.
Specifically, SelfAlign consistently improves the performance
of VSRN and CAMERA by 11.2% and 6.6% in terms of
R@sum on Flickr30k, MS-COCO 1K, and MS-COCO 5K.
For the strongest baseline model CAMERA, SelfAlign also
achieves 9.1%, 4.2%, and 6.6% boosts in terms of R@sum
respectively and achieves a new state-of-the-art performance
in independent-embedding models. It is worth noting that Self-
Align helps the strongest baseline model CAMERA achieve
1.1%∼3.1% boost in terms of R@1 on both retrieval tasks. We
also find the performance improvements of R@1 are almost
superior than the improvements of R@5/10, indicating that
SelfAlign improves the capability of the baseline model to
capture fine-grained discrimination on similar images or texts.

From the comparison between the second block and the last
block, we conclude that with the help of SelfAlign rather than
cross-attention mechanisms, the performance gap between the
interactive-embedding models and the independent-embedding
models is reduced by a large margin. Specifically, CAMERA
with SelfAlign model outperforms the second-best interactive-
embedding model ADAPT [44] by 6.7%, 4.8% in terms of
R@sum on Flickr30k, MS-COCO 1K. Compared to the-state-
of-art interactive-embedding model DIME [31], CAMERA
with SelfAlign also achieves comparable performance in terms
of R@1 on text retrieval on Flickr30K.

B. Efficiency Comparison

To verify the advantage of SelfAlign in keeping the effi-
ciency of independent-embedding models, we construct re-
trieval latency comparison in the inference phase on base-
line models, baseline with SelfAlign models and typical
interactive-embedding models. Since the retrieval latency is
composed of feature encoding latency and scoring latency, we
construct the comparison from these two aspects as shown
in Table II and Table III respectively. Since the interactions
between the object and word can occur in the feature en-
coding stage only [31, 43, 44, 49], the scoring stage only
[15, 18, 21, 42] or both stages [5, 40], we select representative
interactive-embedding models from the above three kinds of
methods with comparable accuracy as ours for retrieval latency
comparison, e.g., DIME [31], PFAN [42], IMRAM [5].

Encoding Latency Comparison. Table II shows the online
encoding latency given per query. Besides, Table II also
reports the model parameter size which mainly affects the
encoding time. Though SelfAlign adds about 36M and 27M
parameters and 1∼3ms latency to the baselines, VSRN and
CAMERA respectively, the encoding latency of the baseline
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TABLE I
COMPARISON WITH EXISTING INDEPENDENT-EMBEDDING MODELS AND INTERACTIVE-EMBEDDING MODELS. OUR RE-IMPLEMENTED

INDEPENDENT-EMBEDDING MODELS ARE DENOTED BY THE SUPERSCRIPT ‘*’. THE HIGHEST RETRIEVAL ACCURACY IN EACH BLOCK IS MARKED WITH
UNDERLINE. THE ACCURACY OF OUR MODELS IS MARKED WITH BLUE COLOR WHEN IS BETTER THAN THE BASELINE MODEL.

Flickr30k MS-COCO 1K MS-COCO 5K
Text Retrieval Image Retrieval Text Retrieval Image Retrieval Text Retrieval Image RetrievalModel

R@1 R@5 R@10 R@1 R@5 R@10
R@sum

R@1 R@5 R@10 R@1 R@5 R@10
R@sum

R@1 R@5 R@10 R@1 R@5 R@10
R@sum

Independent-embedding Models
Order [38] (2016) - - - - - - - 46.7 78.6 88.9 37.9 73.7 85.9 411.7 - - - - - - -
2WayNet [9] (2017) 49.8 67.5 - 36.0 55.6 - 208.9 55.8 75.2 0.0 39.7 63.3 0.0 234.0 23.3 50.5 65.0 18.0 43.6 57.6 258.0
VSE++ [10] (2018) 52.9 79.1 87.2 39.6 69.6 79.5 407.9 64.6 89.1 95.7 52.0 83.1 92.0 476.5 41.3 69.2 81.2 30.3 59.1 72.4 353.5
GXN [39] (2018) 56.8 - 89.6 41.5 - 80.1 - 68.5 - 97.9 56.6 - 94.5 - 42.0 - 84.7 31.7 - 74.6 -
VSRN [23] (2019) 70.4 89.2 93.7 53.0 77.9 85.7 469.9 74.0 94.3 97.8 60.8 88.4 94.1 509.4 50.3 79.6 87.9 37.9 68.5 79.4 403.6
CAMERA [30] (2020) 76.5 95.1 97.2 58.9 84.7 90.2 502.6 75.9 95.5 98.6 62.3 90.9 95.8 519.0 53.1 81.3 89.8 39.0 70.5 81.5 415.2

Interactive-embedding Models
SCAN ensemble [21] (2018) 67.4 90.3 95.8 48.6 77.7 85.2 465.0 72.7 94.8 98.4 58.8 88.4 94.8 507.9 50.4 82.2 90.0 38.6 69.3 80.4 410.9
CAMP ensemble [43] (2019) 68.1 89.7 95.2 51.5 77.1 85.3 466.9 72.3 94.8 98.3 58.5 87.9 95.0 506.8 50.1 82.1 89.7 39.0 68.9 80.2 410.0
CAAN ensemble [49] (2020) 70.1 91.6 97.2 52.8 79.0 87.9 478.6 75.5 95.4 98.5 61.3 89.7 95.2 515.6 52.5 83.3 90.9 41.2 70.3 82.9 421.1
SGM ensemble [40] (2020) 71.8 91.7 95.5 53.5 79.6 86.5 478.6 73.4 93.8 97.8 57.5 87.3 94.3 504.1 50.0 79.3 87.9 35.3 64.9 76.5 393.9
PFAN ensemble [42] (2019) 70.0 91.8 95.0 50.4 78.7 86.1 472.1 76.5 96.3 99.0 61.6 89.6 95.2 518.2 - - - - - - -
IMRAM ensemble [5] (2020) 74.1 93.0 96.6 53.9 79.4 87.2 484.2 76.7 95.6 98.5 61.7 89.1 95.0 516.6 53.7 83.2 91.0 39.6 69.1 79.8 416.4
ADAPT ensemble [44] (2020) 76.6 95.4 97.6 60.7 86.6 92.0 508.9 76.5 95.6 98.9 62.2 90.5 96.0 519.7 - - - - - - -
DIME ensemble [31] (2021) 81.0 95.9 98.4 63.6 88.1 93.0 520.0 78.8 96.3 98.7 64.8 91.5 96.5 526.6 59.3 85.4 91.9 43.1 73.0 83.1 435.8

Ours
VSRN* 69.8 88.8 93.6 52.2 78.3 86.1 468.8 73.8 94.1 97.9 60.1 88.1 94.0 508.0 49.7 78.5 87.6 37.2 68.3 79.0 400.3
VSRN*+SelfAlign 70.4 91.7 95.9 54.6 81.5 88.4 482.6 74.7 95.1 98.0 62.4 89.4 95.1 514.7 52.4 81.3 89.3 39.6 70.0 80.7 413.3
VSRN Improvement +0.6 +2.9 +2.3 +2.4 +3.2 +2.3 +13.8 +0.9 +1.0 +0.1 +2.3 +1.3 +1.1 +6.7 +2.7 +2.8 +1.7 +2.4 +1.7 +1.7 +13.0
VSRN* ensemble 71.0 90.6 94.3 53.9 80.3 87.0 477.1 74.8 95.1 98.3 62.7 89.8 95.0 515.7 51.7 80.8 88.8 39.9 70.4 81.1 412.7
(VSRN*+SelfAlign) ensemble 72.2 92.8 96.6 55.8 82.7 89.0 489.1 75.8 95.5 98.6 64.1 90.5 95.8 520.3 54.3 82.4 90.2 41.3 71.7 82.2 422.1
VSRN* ensemble Improvement +1.2 +2.2 +2.3 +1.9 +2.4 +2.0 +12.0 +1.0 +0.4 +0.3 +1.4 +0.7 +0.8 +4.6 +2.6 +1.6 +1.4 +1.4 +1.3 +1.1 +9.4
CAMERA* 76.5 93.6 97.3 57.9 84.6 90.5 500.4 74.9 95.4 98.5 62.0 89.9 95.2 515.9 52.4 81.7 89.9 38.8 70.1 81.4 414.3
CAMERA*+SelfAlign 79.6 95.1 97.4 59.7 86.2 91.5 509.5 76.8 95.4 98.5 63.1 90.5 95.8 520.1 54.2 82.8 90.6 40.4 71.2 81.7 420.9
CAMERA* Improvement +3.1 +1.5 +0.1 +1.8 +1.6 +1.0 +9.1 +1.9 +0.0 +0.0 +1.1 +0.6 +0.6 +4.2 +1.8 +1.1 +0.7 +1.6 +1.1 +0.3 +6.6
CAMERA* ensemble 78.3 94.4 97.4 60.5 86.1 91.8 508.4 77.0 96.3 98.6 63.6 90.8 95.8 522.1 55.2 83.1 90.9 40.4 71.4 82.2 423.2
(CAMERA*+SelfAlign) ensemble 81.4 95.6 97.3 61.5 87.1 92.7 515.6 77.7 96.3 98.7 64.3 91.3 96.2 524.5 56.1 83.6 91.0 42.2 72.5 82.9 428.3
CAMERA* ensemble Improvement +3.1 +1.2 -0.1 +1.0 +1.0 +0.9 +7.2 +0.7 +0.0 +0.1 +0.7 +0.5 +0.4 +2.4 +0.9 +0.5 +0.1 +1.8 +1.1 +0.7 +5.1

TABLE II
GPU TIME IN EARLY FEATURE ENCODING STAGE PER QUERY ON

FLICKR30K TEST SET.

Model Param.(M) # of candidates
1K(ms) 10K(ms) 100K(ms) 1000K(ms)

PFAN [42] 12.8 2.5 2.5 2.5 2.5
IMRAM [5] 21.8 4.2× 103 4.2× 104 4.2× 105 4.2× 106

DIME [31] 116.3 3.0× 103 3.0× 104 3.0× 105 3.0× 106

VSRN [23] 137.7 7.3 7.3 7.3 7.3
VSRN+SelfAlign (ours) 173.6 8.7 8.7 8.7 8.7
CAMERA [30] 156.2 25.7 25.7 25.7 25.7
CAMERA+SelfAlign (ours) 183.5 28.2 28.2 28.2 28.2

TABLE III
TIME IN SCORING PER QUERY ON 100K CANDIDATES. INTER. DENOTES
THE NUMBER OF THE INTERACTIONS BETWEEN WORDS AND REGIONS.

FLOPS DENOTES THE NUMBER OF FLOATING-POINT OPERATIONS. DIM.
DENOTES THE DIMENSION OF THE SIMILARITY CALCULATION VECTOR.

Model Inter. FLOPs Dim. GPU TIME(ms)
PFAN [42] 32× 36 ×1152 1024 3.3× 103

IMRAM [5] 32× 36×3 ×3456 1024 9.9× 103

DIME [31] 1× 1 ×1 256 1.0
VSRN [23] 1× 1 ×1 2048 2.0
VSRN+SelfAlign (ours) 1× 1 ×1 6144 2.3
CAMERA [30] 1× 1 ×1 2048 2.0
CAMERA+SelfAlign (ours) 1× 1 ×1 6144 2.3

with SelfAlign models still keeps invariant to the number of
candidates, which is much lower than the accuracy comparable
interactive-embedding models. This is because SelfAlign pre-
serves the independent feature encoding architecture and does
not add any cross-modal interactions in the encoding stage.
Therefore, the query embedding can be encoded independently
without the interactions with the queried candidates, and the
embeddings of the queried candidates can be pre-computed
offline without the comsuming of online encoding latency.
In contrast, those models performing cross-modal interactions

during encoding stage, like IMRAM and DIME, need to
encode each text-image pair, resulting in the encoding latency
is linearly related to the number of candidates.

Scoring Latency Comparison. Table III shows the scoring
latency of per query on 100K candidates. The scoring time
is linear with the number of interactions between image
embeddings and text embeddings. The results show that Self-
Align increases about 0.3ms latency to baseline models while
both baseline models with SelfAlign are still 1000 times
faster than the model PFAN and IMRAM, which have cross-
modal token-wise interactions during the scoring stage. This
is because SelfAlign still keeps the baseline model to perform
the computation of similarity scores by using simple similarity
calculation operations like dot product.

C. Accuracy and Efficiency Joint Comparison

To prove the good balance between accuracy and effi-
ciency for image-text retrieval of our module, we visualize
the accuracy and efficiency jointly on Flickr30K and MS-
COCO 5K in Figure 3. Specifically, the trade-off models
include VisualSparta [28], ISERI inflate [26], ISERI fast [26],
LightDOT [34]. VisualSparta [28], ISERI inflate [26] are late-
interaction trade-off models, where there are no cross-modal
token-wise interactions in the feature encoding stage but in the
scoring stage. LightDOT [34] is a pre-trained re-ranking based
method, which utilizes a pre-trained independent-embedding
model to coarsely rank in the first stage and then utilizes
another pre-trained interactive-embedding model UNITER [7]
to finely rank in the second stage. ISERI fast [26] is also an
independent-embedding model but is obtained by performing
knowledge distillation twice under the extra model supervision
of ISERI inflate [26]. This enables ISERI fast to obtain more
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Fig. 3. Image retrieval results of Recall@1 of (a) Flickr30K and (b) MS-
COCO 5K. The retrieval complexity refers to the number of cross-modal
interactions included in the early feature encoding stage and late scoring stage.
The superscript ‘+’ denotes pre-trained models on huge-scale datasets. ‘S’ and
‘T’ represent the student model and the teacher model respectively.

TABLE IV
ABLATION STUDY OF CAMERA WITH SELFALGIN ON FLICK30K.

Param. GPU TIME Text Retrieval Image RetrievalModel (M) (ms) R@1 R@5 R@10 R@1 R@5 R@10 R@sum

#0 Full Model 183.5 2.3 79.6 95.1 97.4 59.7 86.2 91.5 509.5
Ablation of Sub-Module
#1 w/o LCA 183.5 2.3 76.9 94.5 97.5 59.6 84.8 90.9 504.2
#2 w/o CRA 156.2 2.0 77.0 95.1 97.2 58.7 84.6 90.6 503.2
Ablation of LCA
#3 w/ Concept O2W 183.5 2.3 77.7 94.3 97.4 60.5 85.3 91.5 506.8
#4 w/ Concept Dual 183.5 2.3 78.1 94.6 97.3 60.4 85.4 91.3 507.1
#5 w/ noun+adj+verb 183.5 2.3 77.2 94.2 97.2 59.2 85.5 91.2 504.5
#6 w/ noun 183.5 2.3 76.4 94.8 97.0 59.2 84.9 91.0 503.4
Ablation of CRA
#7 w/o Lcs 156.2 2.2 76.1 94.0 97.9 59.4 85.3 90.9 503.7
#8 w/o Lca 183.5 2.3 76.1 94.6 97.3 58.5 84.1 89.8 500.5
#9 w/o Ltg Atd Align 169.9 2.2 77.4 95.1 97.4 59.4 84.7 90.8 504.8
#10 w/o Lvg Atd Align 169.9 2.2 78.2 94.6 97.4 59.3 84.8 90.8 505.1
#11 CAMERA* 156.2 2.0 77.1 93.5 96.3 58.6 84.4 90.6 500.5

accurate fine-grained information under the supervision of the
teacher model ISERI inflate compared with our models.

In Figure 3, the x-axis represents the retrieval complexity
referring to the average number of cross-modal interactions
per candidate when given a query to retrieve the ground-truth
from 1000 candidates. The number of cross-modal interactions
is the sum of the number of interactions in both of the feature
encoding stage and the scoring stage. The y-axis denotes the
results of R@1 in the image retrieval task. The red dots
represent our models. As shown in Figure 3, SelfAlign enables
both baseline models improving the accuracy without increas-
ing retrieval complexity while other trade-off models sacrifice
retrieval efficiency for cross-modal token-wise interactions.
SelfAlign explores the cross-modal semantic correspondences
and improves the retrieval efficiency by achieving fine-grained
alignment matching fine-grained correspondences in the early
feature encoding stage.

D. Ablation Study

We conduct ablation study to evaluate the effectiveness of
essential components in SelfAlign. The results on Flickr30k
are shown in Table IV. We use CAMERA+SelfAlign as the
full model for all the following variants:

• w/o LCA (model ‘#1’): this model removes the Local
Concept Alignment sub-module in SelfAlign.

• w/o CRA (model ‘#2’): this model removes the Contex-
tual Relation Alignment sub-module in SelfAlign.

• w/ Concept O2W (model ‘#3’): this model changes
the direction of concept alignment learning in LCA sub-

module from word-object to object-word. Specifically, we
choose the most similar word as the correspondence for
each object and perform clustering on word embeddings
for fine-grained alignment learning.

• w/ Concept Dual (model ‘#4’): this model preserves
these two directions of concept alignment learning.

• w/ noun+adj+verb (model ‘#5’): this model performs
concept alignment learning only with nouns, verbs and
adjectives instead of all the words.

• w/ noun (model ‘#6’): this model performs concept
alignment learning only with nouns.

• w/o Lcs (model ‘#7’): this model removes the global-to-
local contrastive loss Lcs in Equation 8 for shared context
enhancement in CRA sub-module.

• w/o Lca (model ‘#8’): this model removes that the
contextual alignment loss Lca in Equation 11 for shared
context alignment learning in CRA sub-module.

• w/o Ltg Atd Align (model ‘#9’): this model removes T-
global/V-local contrastive learning attended context align-
ment. There is no projection for tcg in Equation 5, Ltg in
Equation 6, text fusion in Equation 9 and the similarity
computation in the first term of Equation 10.

• w/o Lvg Atd Align (model ‘#10’): this model removes V-
global/T-local contrastive learning attended context align-
ment, which is symmetrical with model ‘#9’.

Models in the first block are designed to evaluate the
contribution of each sub-module in SelfAlign. We observe
that the R@sum value of models ‘#1-#2’ all significantly
decrease by 5.3% and 6.3%, but they still outperform the
baseline model ‘#11’. It shows that both alignment sub-
modules are effective for baseline to extract different levels of
fine-grained correspondences and the combination of them can
further improve retrieval accuracy. It proves the effectiveness
and complementarity of concept level and contextual level
alignment information learned in LCA and CRA sub-module.

Models in the second block evaluate the influence of the
single direction and the effectiveness of utilizing all words to
perform word-object alignment learning in LCA. The perfor-
mance of either model ‘#3’ or model ‘#4’ decreases slightly
by 2.7% and 2.4% respectively, which demonstrates word-to-
object alignment captures more accurate concept alignment
information. Besides, The performance of either model ‘#5’ or
model ‘#6’ decreases by 5.0% and 6.1%, which demonstrates
the effectiveness of making the most use of text information
via utilizing all words to align regions in LCA sub-module.

Models in the third block evaluates the influence of the
key components in the CRA sub-module. The performance of
model ‘#7’ and model ‘#8’ decreases remarkably compared
with the full model. The results show that both shared con-
text enhancement by the global-to-local contrastive loss and
shared context alignment learning are essential for contextual
alignment. The performance of model ‘#8’ is decreased to
the results as the baseline model ‘#11’ in terms of R@sum,
which indicates that CRA sub-module only with global-to-
local constrastive learning objective Lcs is not only ineffective
in context-level alignment but also damaging to the concept-
level alignment in the LCA sub-module. The reason is that
only with Lcs in the model ‘#8’ takes the local contextual



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

Fig. 4. Visualization of similarity in LCA and CRA alignment module. (a) (b) (c) (d) visualize the most matched word-to-region pair results in LCA, where
each text concept is used as a query to find the most similar image region and the region outlined in the same color. (e) visualizes the global to local relevance
of CRA at the training stage, where the region brightness represents the similarity strength.

embeddings from unmatched image-text pairs as the negative
samples according to Equation Lcs to learn the shared context
information in the image-text pair, which ignores that these
local contextual embeddings could mainly include the correct
concept information in the concept alignment of the LCA sub-
module. This conflict makes both the LCA and CRA sub-
module ineffective. Compared to model ‘#2’, the performance
of model ‘#9’ and model ‘#10’ improves slightly even when
the models only preserve half part of CRA sub-module. These
results verify the effectiveness of preserving the joint learning
mode of global-to-local contrastive loss. Moreover, compared
to the full model, model ‘#9’ and model ‘#10’ lead to the
performance degradation, which demonstrates that these two
context-level alignment are effective and capture complemen-
tary contextual information from vision global supervision and
text global supervision.

Moreover, we observe that the LCA sub-module does not
take extra parameters for the baseline model as it only involves
in LLCA defined in Equation 4 for local concept alignment
learning. The CRA sub-module causes the increments of
parameters and retrieval latency for baseline model CAMERA
by 27.3M and 0.3ms, respectively, which is due to the feature
linear projections defined in Equation 5 and feature fusion
based on the gate mechanism defined in Equation 9.

E. Alignment Quality Analysis
Alignment visualization of the concept representation.

We utilize t-SNE [36] to visualize region and word em-
beddings of some frequent concepts for intuitively analyz-
ing the concept-level alignment, as shown in Figure 5. The
embeddings are obtained by CAMERA model and CAM-
ERA+SelfAlign model. We conclude that SelfAlign pulls the
distance of same semantic concepts of different modalities.
For example, in Figure 5 (b), the concept ‘water’, ‘dirt’, and
‘shorts’ are densely clustered by CAMERA+SelfAlign while
CAMERA can not.

Alignment visualization in LCA and CRA sub-module.
The detailed alignment process is interpretable by visualizing

Fig. 5. T-SNE visualization of concept representations. ‘Cross’ means textual
concept, and ‘circle’ means visual concept.

the conceptual and contextual similarity scores at LCA sub-
module and CRA sub-module. The results are shown in Figure
4. Specifically, given an image-text pair in the inference
phase, the most similar region for each word is identified
in LCA sub-module. The global to local similarity map is
computed in CRA sub-module, which supports the explicit
visualization and reveals the alignment process. From the first
four columns, we observe that the words align to the proper
regions with the highest similarity. For example, in the first
example, our model finds appropriately matched regions on
nouns like ‘toddler’, ‘food’, ‘bowel’, as well as the action
word like ‘mixed’. In the CRA sub-module, we observe that
semantically matched image regions align well to the text
global context embedding, while irrevevant image regions
are suppressed. These examples prove that SelfAlign learns
the concept-level word-object correspondences in LCA sub-
module and composites the essential regions to understand the
global context information in CRA.

Qualitative retrieval results analysis. The qualitative re-
sults from text-to-image retrieval and the image-to-text re-
trieval on Flickr30K are illustrated in Figure 6 and Figure 7,
respectively. From both retrieved results, it’s clear that CAM-
ERA+SelfAlign retrieves the correct candidates to a more
forward position. Moreover, for those candidates with similar
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Fig. 6. Qualitative comparison of text-to-image retrieval between the baseline
model CAMERA and CAMERA+SelfAlign on Flickr30K. We show the top-3
retrieved images for each text query. The truly matched results are marked in
green boxes and the falsely matched results are in red boxes.

Fig. 7. Qualitative comparison of image-to-text retrieval between the baseline
model CAMERA and CAMERA+SelfAlign on Flickr30K. We show the top-3
ranked texts for each image query. The truly matched sentences are marked
with checks and the falsely matched results are with cross. The concepts in
the retrieved text of CAMERA+SelfAlign that differ from the baseline model
are marked with underline.

scenes, SelfAlign enables the baseline model to distinguish the
fine-grained discrimination among the candidates well, which
verifies that SelfAlign is effective in fine-grained cross-modal
information retrieval.

V. CONCLUSION

In this paper, we propose a fine-grained image-text align-
ment module SelfAlign for fast and accurate image-text re-
trieval. We design two collaborative sub-modules to learn
complementary alignment information from both conceptual
and contextual level in a self-supervised manner, which im-
proves the retrieval accuracy while keeps the retrieval effi-
ciency. SelfAlign is model-agnostic and generic to incorporate

with various independent-embedding retrieval approaches. Our
module consistently boosts the accuracy of the strongest non-
pre-training independent-embedding model. How to extend
SelfAlign on other cross-modal retrieval tasks such as video-
text retrieval will be our future work.

REFERENCES

[1] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell,
Dhruv Batra, C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question
answering. In ICCV, pages 2425–2433, 2015.

[2] Philip Bachman, R. Devon Hjelm, and William Buchwalter. Learning
representations by maximizing mutual information across views. In
NeurIPS, pages 15509–15519, 2019.

[3] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze.
Deep clustering for unsupervised learning of visual features. In ECCV,
pages 139–156, 2018.

[4] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bo-
janowski, and Armand Joulin. Unsupervised learning of visual features
by contrasting cluster assignments. In NeurIPS, pages 9912–9924, 2020.

[5] Hui Chen, Guiguang Ding, Xudong Liu, Zijia Lin, Ji Liu, and Jungong
Han. Imram: Iterative matching with recurrent attention memory for
cross-modal image-text retrieval. In CVPR, pages 12655–12663, 2020.

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E.
Hinton. A simple framework for contrastive learning of visual rep-
resentations. In ICML, pages 1597–1607, 2020.

[7] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed,
Zhe Gan, Yu Cheng, and Jingjing Liu. Uniter: Universal image-text
representation learning. In ECCV, pages 104–120, 2020.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: pre-training of deep bidirectional transformers for language
understanding. In NAACL-HLT, pages 4171–4186, 2019.

[9] Aviv Eisenschtat and Lior Wolf. Linking image and text with 2-way
nets. In CVPR, pages 4601–4611, 2017.

[10] Fartash Faghri, David J. Fleet, Jamie Ryan Kiros, and Sanja Fidler.
VSE++: improving visual-semantic embeddings with hard negatives. In
BMVC, page 12, 2018.

[11] Andrea Frome, Gregory S. Corrado, Jonathon Shlens, Samy Bengio,
Jeffrey Dean, Marc’Aurelio Ranzato, and Tomás Mikolov. Devise: A
deep visual-semantic embedding model. In NeurIPS, pages 2121–2129,
2013.

[12] Gregor Geigle, Jonas Pfeiffer, Nils Reimers, Ivan Vulic, and Iryna
Gurevych. Retrieve fast, rerank smart: Cooperative and joint approaches
for improved cross-modal retrieval. TACL, pages 503–521, 2022.

[13] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick.
Momentum contrast for unsupervised visual representation learning. In
CVPR, pages 9726–9735, 2020.

[14] R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan
Grewal, Philip Bachman, Adam Trischler, and Yoshua Bengio. Learning
deep representations by mutual information estimation and maximiza-
tion. In ICLR, 2019.

[15] Yan Huang, Wei Wang, and Liang Wang. Instance-aware image and
sentence matching with selective multimodal lstm. In CVPR, pages
2310–2318, 2017.

[16] Zhong Ji, Kexin Chen, and Haoran Wang. Step-wise hierarchical
alignment network for image-text matching. In IJCAI, pages 765–771,
2021.

[17] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu
Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. Scaling
up visual and vision-language representation learning with noisy text
supervision. In ICML, pages 4904–4916, 2021.

[18] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for
generating image descriptions. In CVPR, pages 3128–3137, 2015.

[19] Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In ICLR, 2017.

[20] Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason
Baldridge. Room-across-room: Multilingual vision-and-language nav-
igation with dense spatiotemporal grounding. In EMNLP, pages 4392–
4412, 2020.

[21] Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu, and Xiaodong He.
Stacked cross attention for image-text matching. In ECCV, pages 201–
216, 2018.

[22] Chunyuan Li, Jianwei Yang, Pengchuan Zhang, Mei Gao, Bin Xiao,
Xiyang Dai, Lu Yuan, and Jianfeng Gao. Efficient self-supervised vision
transformers for representation learning. In ICLR, 2022.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

[23] Kunpeng Li, Yulun Zhang, Kai Li, Yuanyuan Li, and Yun Fu. Visual
semantic reasoning for image-text matching. In ICCV, pages 4654–4662,
2019.

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft
coco: Common objects in context. In ECCV, pages 740–755, 2014.

[25] Chunxiao Liu, Zhendong Mao, Tianzhu Zhang, Hongtao Xie, Bin
Wang, and Yongdong Zhang. Graph structured network for image-text
matching. In CVPR, pages 10921–10930, 2020.

[26] Haoliang Liu, Tan Yu, and Ping Li. Inflate and shrink: Enriching and
reducing interactions for fast text-image retrieval. In EMNLP, pages
9796–9809, 2021.

[27] Xihui Liu, Zihao Wang, Jing Shao, Xiaogang Wang, and Hongsheng Li.
Improving referring expression grounding with cross-modal attention-
guided erasing. In CVPR, pages 1950–1959, 2019.

[28] Xiaopeng Lu, Tiancheng Zhao, and Kyusong Lee. Visualsparta: An
embarrassingly simple approach to large-scale text-to-image search with
weighted bag-of-words. In ACL/IJCNLP, pages 5020–5029, 2021.

[29] Antoine Miech, Jean-Baptiste Alayrac, Ivan Laptev, Josef Sivic, and
Andrew Zisserman. Thinking fast and slow: Efficient text-to-visual
retrieval with transformers. In CVPR, pages 9826–9836, 2021.

[30] Leigang Qu, Meng Liu, Da Cao, Liqiang Nie, and Qi Tian. Context-
aware multi-view summarization network for image-text matching. In
ACM MM, pages 1047–1055, 2020.

[31] Leigang Qu, Meng Liu, Jianlong Wu, Zan Gao, and Liqiang Nie.
Dynamic modality interaction modeling for image-text retrieval. In
SIGIR, pages 1104–1113, 2021.

[32] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel
Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin,
Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision. In ICML, pages 8748–
8763, 2021.

[33] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-
cnn: towards real-time object detection with region proposal networks.
TPAMI, pages 1137–1149, 2016.

[34] Siqi Sun, Yen-Chun Chen, Linjie Li, Shuohang Wang, Yuwei Fang, and
Jingjing Liu. Lightningdot: Pre-training visual-semantic embeddings for
real-time image-text retrieval. In NAACL, pages 982–997, 2021.

[35] Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-
supervised learning dynamics without contrastive pairs. In ICML, pages
10268–10278, 2021.

[36] Laurens van der Maaten and Geoffrey E. Hinton. Visualizing data using
t-sne. J Mach Learn Res, pages 2579–2605, 2008.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In NeurIPS, pages 5998–6008, 2017.

[38] Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. Order-
embeddings of images and language. In ICLR, 2016.

[39] Bokun Wang, Yang Yang, Xing Xu, Alan Hanjalic, and Heng Tao Shen.
Adversarial cross-modal retrieval. In ACM MM, pages 154–162, 2017.

[40] Sijin Wang, Ruiping Wang, Ziwei Yao, Shiguang Shan, and Xilin Chen.
Cross-modal scene graph matching for relationship-aware image-text
retrieval. In WACV, pages 1508–1517, 2020.

[41] Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, and Lei Li.
Dense contrastive learning for self-supervised visual pre-training. In
CVPR, pages 3024–3033, 2021.

[42] Yaxiong Wang, Hao Yang, Xueming Qian, Lin Ma, Jing Lu, Biao Li, and
Xin Fan. Position focused attention network for image-text matching.
In IJCAI, pages 3792–3798, 2019.

[43] Zihao Wang, Xihui Liu, Hongsheng Li, Lu Sheng, Junjie Yan, Xiaogang
Wang, and Jing Shao. Camp: Cross-modal adaptive message passing for
text-image retrieval. In ICCV, pages 5764–5773, 2019.

[44] Jonatas Wehrmann, Camila Kolling, and Rodrigo C Barros. Adaptive
cross-modal embeddings for image-text alignment. In AAAI, pages
12313–12320, 2020.

[45] Yiling Wu, Shuhui Wang, Guoli Song, and Qingming Huang. Learning
fragment self-attention embeddings for image-text matching. In ACM
MM, pages 2088–2096, 2019.

[46] Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin. Unsupervised
feature learning via non-parametric instance discrimination. In CVPR,
pages 3733–3742, 2018.

[47] Mang Ye, Xu Zhang, Pong C. Yuen, and Shih-Fu Chang. Unsupervised
embedding learning via invariant and spreading instance feature. In
CVPR, pages 6210–6219, 2019.

[48] Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From
image descriptions to visual denotations: New similarity metrics for
semantic inference over event descriptions. TACL, pages 67–78, 2014.

[49] Qi Zhang, Zhen Lei, Zhaoxiang Zhang, and Stan Z Li. Context-aware
attention network for image-text retrieval. In CVPR, pages 3536–3545,
2020.

Jiamin Zhuang is currently studying for a Ph.D.
degree in the Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China. Ji-
amin Zhuang received her B.S. degree in network
engineering from Henan University, China, in 2016.
Her research interests mainly focus on cross-modal
retrieval.

Jing Yu is currently an associate professor in
the Institute of Information Engineering, Chinese
Academy of Sciences, Beijing, China. Jing Yu re-
ceived her B.S. degree in Automation Science from
Minzu University, China, in 2011, and got her
M.S. degree in Pattern Recognition from Beihang
University, China in 2014. She recieved her Ph.D.
degree in the University of Chinese Academy of Sci-
ences, China, in 2019. Her research interests mainly
focus on cross-modal understanding, including vi-
sual question answering, cross-modal information

retrieval, scene graph generation, etc.

Yang Ding is currently studying for a master’s
degree in the Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China. Yang
Ding received his B.S. degree in chemistry from
Wuhan University, China, in 2016. His research
interests mainly focus on knowledge-based visual
question answering.

Xiangyan Qu is currently studying for a Ph.D.
degree in the Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China. Xi-
angyan Qu received his B.S. degree in Internet of
Things Professional from University of Science and
Technology Beijing, China, in 2017. His research
interests mainly focus on scene recognition.

Yue Hu is a Professor in the Institute of Information
Engineering,Chinese Academy of Sciences, Beijing,
China. Her research interests are in the area of natu-
ral language processing and social network analysis.


	Introduction
	Related Works
	Image-Text Retrieval
	Trade-Off Image-Text Retrieval Models
	Self-Supervised Contrastive Learning

	Methodology
	Single-Modal Embedding Extraction
	Local Concept Alignment Sub-Module
	Contextual Relation Alignment Sub-Module
	SelfAlign with Typical Independent-Embedding Models
	Model Training and Inference

	Experiment
	State-of-the-Art Comparison
	Efficiency Comparison
	Accuracy and Efficiency Joint Comparison
	Ablation Study
	Alignment Quality Analysis

	Conclusion
	Biographies
	Jiamin Zhuang
	Jing Yu
	Yang Ding
	Xiangyan Qu
	Yue Hu


