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u The roadmap of our CogModal group



u Visual question answering (VQA) evolves from perception to reasoning
and then to cognition, requiring a gradually increase of intelligence.
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uKnowledge-based Visual Question Answering (KB-VQA) requires visual knowledge 
acquisition and reasoning.

What is the name of 
this type of motorcycle?
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KawasakiKnowledge 
Reasoning

Unstructured Knowledge

• OK-VQA [CVPR2020]
• Ask me anything [CVPR2016]
• Visual-Retriever-Reader [EMNLP2021] 

Structured Knowledge

• Conceptbert [EMNLP2020]
• Knowledge is power [SIGKDD2021]
• Mucko [IJCAI 2020]

Implicit Knowledge

• PICa [EMNLP2022]
• Frozen [NIPS2021]
• KAT [arXiv2022]

Multimodal Knowledge

motorcycle         Kawasaki

• KM4 [Information fusion2021]
• Gaia [ACL2020]
• MKGAT [CIKM2020]



l How to represent the multimodal knowledge?

l How to accumulate the multimodal knowledge in the VQA scenarios? 

l How to maintain the advantages of traditional knowledge graph in explainable reasoning?

Our Goal 



Model Framework
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Head entity extraction

Ø Head entity
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Relation extraction

Ø Relation 

𝑟 = 𝐹𝐹𝑁([𝐶𝐿𝑆])
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Knowledge Triplet Representation Learning
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𝐿OPQRST = D
UV∈XV

D
UY∈XY

[𝛾 + 𝑑 ℎ + 𝑟, 𝑡\ − 𝑑 ℎ + 𝑟, 𝑡. ]\

l Preserve the embedding structure:

l Force the strict topological relation:

𝐿OP, = 𝑀𝑆𝐸(ℎ + 𝑟, 𝑡\)

l Learn a common semantic space:

𝑃 𝑡\ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑇)O ℎ + 𝑟
𝐿ghi = − log 𝑃 𝑡\

l The final loss:

𝐿 = 𝐿OPQRST + 𝐿OP, + 𝐿ghi



Knowledge Accumulation and Prediction

l Pre-training

VQA 2.0:  basic visual dominant knowledge.

l Fine-tuning

OK-VQA/KR-VQA: more complex domain-specific 
multimodal knowledge.

l Inference

𝑡,R j = 𝑎𝑟𝑔min
Um∈O

𝑑(ℎ,R j + 𝑟,R j , 𝑡,)



Experiment Analysis

• MuKEA achieves a remarkable 
boost of 3.35% on the overall 
metric over the best model

• End-to-end mode effectively 
avoids cascading error.

• MuKEA captures the question-
centric and information-abstract 
multimodal knowledge

OK-VQA 



Experiment Analysis 
KRVQA

l MuKEA consistently achieves a remarkable boost of 6.08% on the overall metric over the best model

l Even the vision-only questions require multimodal commonsense to bridge the low-level visual 
content and high-level semantics.



Experiment Analysis 
Ablation Study

l Confirm the complementary of each loss function.

l Assess the influence of triplet extraction methods.

l Prove the importance of triplet structure.

l Both basic knowledge and domain-specific 
knowledge are important.

l Influence of prior knowledge accumulated in the 
pre-trained LXMERT



Experiment Analysis 
Knowledge Complementary Analysis

l Multimodal knowledge and existing 
KB knowledge respectively deals 
with different types of open-ended 
question

l Complementary benefits of multimodal 
knowledge and existing knowledge 
bases



Experiment Analysis 
travel

vitamins

cell phone

airport

Accumulated Multimodal 
Knowledge

l MuKEA extracts different instantiated 
knowledge for the same image

l The same concept is associated with 
different visual knowledge in 
different scenes.

l Relation is extensible and supporting 
retrieval.



Experiment Analysis 
The Predicted Multimodal Knowledge Triplets

l MuKEA captures 
instantiated knowledge

l MuKEA contains multi-
object involved complex 
knowledge

l MuKEA avoids the 
cascading error.



Experiment Analysis 

l We illustrate how the basic visual knowledge in VQA 2.0 helps to learn more complex knowledge 
in OK-VQA.

Progressive Knowledge Accumulation



Experiment Analysis 

Zero-shot Analysis of Accumulated Multi-modal Knowledge

l MuKEA correlates ‘giraffe’ with ‘evolution’ through the manually constructed question.



Summary and Future Work

Ø Summary

l MuKEA focuses on multimodal knowledge instead of language knowledge for KB-VQA.

l Multimodal knowledge is represented by explicit triplets via three loss functions.

l A pre-training and fine-tuning strategy accumulates multimodal knowledge from basic to complex.

Ø Future Work

l How to effectively combine multimodal knowledge with existing knowledge bases?

l How to accumulate generic multimodal knowledge for vision-language tasks?
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