= Microsoft

MuKEA: Multimodal Knowledge Extraction and Accumulatic@ <
for Knowledge-based Visual Question Answering

CVPR 2022 A \/

Yang Ding, Jing Yu*, Bang Liu, Yue Hu, Mingxin Cui, Qi Wu ) |
g Ding , Jing g g ”]?/] i
& I

-t :
& IEE] Y

R A\
X

YaiysRRT



B® Microsoft

Content

Motivation
Model
Experiments
Summary




b ol

¢ The roadmap of our CogModal group CogModal

GROUP

\®

Q: What'’s the time in Portugal ?

‘§° Complex relationships * Commonsense
f §° Long reasoning chain  * World Knowledge

N

Reasoning

I Vi
' What color is the food on the | !
| red object left of the small girl ==
| that is holding a hamburger, 1%
. yellow or green? !

Question Question Guidance

What is
Y related?
-)

Interaction oo wnatis
~ « Non-repeated " whatw

. \
> What will
\_happen?

* Detailed * Dynamic Memory

* Structural Memory
Accumulation Perception

Concept

(o] Concept o .
@ O NSO ? 8
‘S © - . ]

& ® - &) .+ Knowledge Representation + Heterogeneous Gap

o,@ by ®°@° Knowledge Accumulation * Fine-grained Alignment|£

pral]

® Concept
Concept

CVPR 2022 itXHES




Visual question answering (VQA) evolves from perception to reasoning
and then to cognition, requiring a gradually increase of intelligence.

type computer

. \ / What is the function of the
cognition keyboard object to the right of the
— / N\, red object in the picture ?
touch panel USB
: right of olor What is the color of the
reasoning

ouse—» keyboard > white object to the right of the
red object in the picture ?
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mouse What.is the red object in
the picture?



Knowledge-based Visual Question Answering (KB-VQA) requires visual knowledge
acquisition and reasoning.
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———  Reasoning

»  Kawasaki

Answer

What is the name of
this type of motorcycle?

Question

Unstructured Knowledge Structured Knowledge Implicit Knowledge Multimodal Knowledge

motorcycle ——>Kawasaki
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Our Goal

o0 N NS

>
Knowledge Graph .~ | Multimodal Knowledge 7

| motorcycle|—>|Kawasaki|

'Q: What is the name of this
type of motorcycle?
A: Kawasaki

How to represent the multimodal knowledge?
How to accumulate the multimodal knowledge in the VQA scenarios?

How to maintain the advantages of traditional knowledge graph in explainable reasoning?
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Model Framework
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Multimodal Knowledge Triplet Extraction
Multimodal Knowledge Triplet Extraction
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Multimodal Knowledge Triplet Extraction
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Multimodal Knowledge Triplet Extraction
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Multimodal Knowledge Triplet Extraction
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Multimodal Knowledge Triplet Extraction
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Multimodal Knowledge Triplet Extraction
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Knowledge Triplet Representation Learning

L | . | L .
TransE Lrr | Sem ® Preserve the embedding structure:
E + E E + E E +
M4l 7] =T Lrvanse = . Y [y +d(h+7,t9) —d(h+7,6)],
I E Mean E tteAt t— €A~
swing i S%uared i
: Il | ® Force the strict topological relation:
negative answer E swing Estand swing . play
1 Ly = MSE(h +7,t%)
® Learn a common semantic space:
Multimodal Knowledge P(tt) = Softmax((T)T(h + r))

Lsem = _log(P(t+))

® The final loss:

L = Lyrgnsg + Lyyi + Lsem
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Knowledge Accumulation and Prediction

What is the dog wearing? What is the girl reaching into?
life jacket collar bUert apples

® Pre-training

VQA 2.0: basic visual dominant knowledge.

® Fine-tuning

Vehicles and } [ Brands, Companies J [ Objects, Material and

OK-VQA/KR-VQA: more complex domain-specific [ and ot g
multimodal knowledge.

] [Sportsand Recreation ] [ Cooking and Food ]

. I n fe re n Ce Q: What sort of vehicle uses Q: When was the soft drink Q: What is the material used Q: What is the sports position Q: What is the name of the
this item? company shown first created? to make the vessels in this of the man in the orange shirt? object used to eat this food?
A: firetruck A: 1898 picture? A: goalie A: chopsticks
A: copper

AT T ——
™ b ] A ' ‘ :

tiny = arg rtnelp d(hin g+ Tin s, ti)
l

- 12 A A R SR N G
Q: What days might | most Q: Is this photo from the 50’s Q: What phylum does this Q: How many chromosomes Q: What is the warmest outdoor
commonly go to this building? or the 90’s? animal belong to? do these creatures have? temperature at which this kind
A: Sunday A:50's A: chordate, chordata A:23 of weather can happen?

A: 32 degrees
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Experiment Analysis

OK-VQA
Method Knowledge Resources Accuracy *
ArticleNet (AN) [25] Wikipedia 5.28

Q-only [25] — 14.93
BAN [15] — 25.17
+AN [25] Wikipedia 25.61
+ KG-AUG [17] Wikipedia + ConceptNet 26.71

MUTAN [5] — 26.41 o
+ AN [25] Wikipedia 27.84
Mucko [47] ConceptNet 29.20
GRUC [42] ConceptNet 29.87

KM* [45] multimodal knowledge from OK-VQA 31.32 *
VIiLBERT [21] — 31.35
LXMERT [35] — 32.04
KRISP(w/o mm pre.) [24] DBpedia + ConceptNet + VisualGenome + haspartKB 32.31
KRISP(w/ mm pre.) [24] DBpedia + ConceptNet + VisualGenome + haspartKB 38.90
ConceptBert [Y] ConceptNet 33.66
Knowledge is Power [46] YAGO3 39.24
| MuKEA multimodal knowledge from VQA 2.0 and OK-VQA 42.59

MuKEA achieves a remarkable
boost of 3.35% on the overall
metric over the best model

End-to-end mode effectively
avoids cascading error.

MuKEA captures the question-
centric and information-abstract
multimodal knowledge
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Experiment Analysis

KRVQA
KB-not-related KB-related
Method one-step two-step one-step two-step Overall
0 1 2 3 4 5 6 2 3 4 5 6

Q-type [7] 36.19 2.78 8.21 |33.18 35.97 3.66 8.06 | 0.09 [0.00 0.18 0.06 0.33 | 8.12
LSTM [7] 4598 2.79 2.5 |43.26 40.67 2.62 1.72 | 043 |0.00 0.52 1.65 0.74 | 8.81
FiLM [20] 52.42 21.35 18.50145.23 42.36 21.32 15.44| 6.27 |5.48 437 441 7.19 | 16.89
MFH [44] 43.74 28.28 27.49|38.71 36.48 20.77 21.01| 12.97 |5.10 6.05 5.02 14.38| 19.55
UpDn [2] 56.42 29.89 28.63/49.69 43.87 24.71 21.28| 11.07 |8.16 7.09 5.37 13.97| 21.85
MCAN [43] 49.60 27.67 25.76(39.69 37.92 21.22 18.63| 12.28 |9.35 9.22 5.23 13.34| 20.52
+ knowledge retrieval [ 7]/51.32 27.14 25.69/41.23 38.86 23.25 21.15] 13.59 [9.84 9.24 5.51 13.89] 21.30

MuKEA

59.12 44.88 37.36

52.47 48.08 35.63 31.61

17.62

6.14 9.85 6.22 18.28

27.38

® MuKEA consistently achieves a remarkable boost of 6.08% on the overall metric over the best model

® Even the vision-only questions require multimodal commonsense to bridge the low-level visual
content and high-level semantics.
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Experiment Analysis
Ablation Study

Method Accuracy

1. MuKEA (full model) 42.59

Ablation of Loss Function

2. Wlo Lo 41.35 ® Confirm the complementary of each loss function.
3. w/o Lsem 42.06

4. w/o L1y & Lgem 40.84

5. W/0 LrvansE 24.50

Ablation of Triplet Representation

6. head entity w/ soft-attention 40.67

7. relation w/ self-attention 40.79 ® Assess the influence of triplet extraction methods.
8. tail entity w/ GloVe 41.42

Ablation of Triplet Structure

9. wloh 39.83 ® Prove the importance of triplet structure.

10. w/or 39.40

o LS s P ® Both basic knowledge and domain-specific

11. w/o VQA 2.0 knowledge 36.35 K led .

12. w/o OK-VQA knowledge 27.20 nowledge are important.

Ablation of Pre-training Knowledge i i

13. w/o LXMERT pre-training 33,52 ® Influence of prior knowledge accumulated in the

pre-trained LXMERT
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Experiment Analysis
Knowledge Complementary Analysis

Method Failure subset Method Accuracy
MUTAN + AN* [Mucko* [ KRISP* MuKEA 42.59
MuKEA 40.09 40.06 | 40.46 MUTAN + AN” 25.43
MuKEA + (MUTAN + AN™) 35.39
(@) 1 . MuKEA + (MUTAN + AN*) oracle | 43.64
Failure subset Mucko™ 2717
Method MuKEA MuKEA + Mucko* 35.97
MUTAN + AN* 26.45 MuKEA + Mucko* oracle 44.84
Mucko* 27.68 KRISP* 32.02
KRISP* 27.68 MuKEA + KRISP* 37.75
(b) MuKEA + KRISP* oracle 47.15
® Multimodal knowledge and existing ® Complementary benefits of multimodal
KB knowledge respectively deals knowledge and existing knowledge
with different types of open-ended bases
qguestion
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® MuKEA extracts different instantiated °
knowledge for the same image

urban

® The same concept is associated with y
different visual knowledge in hardwodd
different scenes.
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Experiment Analysis

The Predicted Multimodal Knowledge Triplets

KRISP: laptop X

MuKEA: remote v

Knowledge graph

Multimodal knowledge

(screen, is on, laptop)
(laptop, has, screen)

(button, @ , remote)

—

Q: What electronic device is P8

being featured in this photo?

Q: What device is pictured?
Ground Truth: remote

KRISP : victorian X

MuKEA: gothic v

Knowledge graph

Multimodal knowledge

(victorian, is a, comic)

(city, @ , gothic)

&
i

Q: What type of architecture ;

is shown in these buildings?

Q: What style of architecture is pictured in
this photo?
Ground Truth: gothic

KRISP : granny smith X

MuKEA: navel v/

Knowledge graph

Multimodal knowledge

(apple, capable of,
granny smith)

(orange , @ , navel)

Q: What style of oranges are
in the stack?

Q: What kind of orange is this?
Ground Truth: navel
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Q: What kind of plane is
this?

Q: What is the name for a
child of the species shown?

KRISP: biplane X MuKEA: prop plane v

Knowledge graph Multimodal knowledge

(biplane, is a, airplane) (propeller, @ , prop plane)

- Q: What type of fuel does this plane use?
‘r Ground Truth: jet

KRISP : danger X MuKEA: drown v/

Knowledge graph Multimodal knowledge

(danger, has property, bad) (water, @ , drown)

== (Q: What is the largest one of these natural

fo sy occurrences ever recorded?
fﬁ Ground Truth: 100 feet

KRISP : herd X MuKEA: calf v/

Knowledge graph

Multimodal knowledge
(sheep, is in, herd)

COW, , cal
(herd, has part, lamb) ( @ )

Q: The baby of this animal is called what?
Ground Truth: calf

® MuKEA captures

instantiated knowledge

® MuKEA contains multi-

object involved complex
knowledge

® MUuKEA avoids the

cascading error.




Experiment Analysis

Progressive Knowledge Accumulation

VQA 2.0 samples Knowledge after pre-training OK-VQA samples Knowledge after fine-tuning

* ¢
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2 =
R <!
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Q: What kind of vehicle Q: What are parked in
is shown? the street ?
A: motorcycle A: motorcycle

r

plastic %,
%,
Q: What is the container Q: What material is the
made of? screen depicted made of?
A: plastic A: plastic

® We illustrate how the basic visual knowledge in VQA 2.0 helps to learn more complex knowledge
in OK-VQA.
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Experiment Analysis

Zero-shot Analysis of Accumulated Multi-modal Knowledge

VQA 2.0 samples OK-VQA samples Knowledge after fine-tuning Test samples

<, Pty “
= &

Q: Which animal in the picture has
a neck that evolved to reach food?
MuKEA: giraffe v/

Q What.typc of animal Q: What evolutionary advantage
IS 1n the picture ? does the neck of a giraffe give it?
A: giraffe A: reach food

Q: What is the fucion of the
object on tracks?
MuKEA: transportation

Q: Where is the train? Q: What kind of train is this?
A: on tracks A: transportation on tracks

® MUuKEA correlates ‘giraffe’ with ‘evolution” through the manually constructed question.
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Summary and Future Work
> Summary

® MuKEA focuses on multimodal knowledge instead of language knowledge for KB-VQA.
® Multimodal knowledge is represented by explicit triplets via three loss functions.

® A pre-training and fine-tuning strategy accumulates multimodal knowledge from basic to complex.

> Future Work

® How to effectively combine multimodal knowledge with existing knowledge bases?

® How to accumulate generic multimodal knowledge for vision-language tasks?
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