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on/lay on beach imo human on beach. Given

such SGG, the down-stream tasks such as VQA can hardly

infer better scene structures than merely a bag of objects.
However, debiasing in SGG is not trivial because tradi-
tional debiasing methods cannot distinguish between the
good and bad bias, e.g., good context prior (e.g., person
read book rather than eat) and bad long-tailed bias
(eg neardominan'n behind/in front of). Inthis
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Abstract

Fact-based Visual Question Answering (FVQA) re-
quires external knowledge beyond visible content
1o answer questions about an image, which is chal-
lenging but indispensable to achieve general VQA.
One limitation of existing FVQA solutions is that
they jointly embed all kinds of information with-
oult fine-grained sclection, which introduces unex-
pected noises for reasoning the final answer. How
to capture the question-oriented and information-
complementary evidence remains a key challenge
1o solve the problem. In this paper. we depact
an image by a multi-modal heterogencous graph,
which contains muluple layers of information cor-
responding to the visual, semantic and factual fea-
tures. On top of the multi-layer graph representa-
tons, we propose a modality-aware heterogencous
graph comvolutional network 1o capture evidence
from different layers that is most relevant to the
given question, Specifically. the intra-modal graph
convolution selects evadence from each modality
and cross-modal graph convolution aggregates rel-
evant information across different modalities. By
stacking this process maltiple times, our model
performs iterative reasoning and predicts the opti-
mal answer by analyzing all question-onented ev-

idence. We achieve a new state-of-the-an perfor-

mance on the FVQA task and demoastrate the ef-
fectiveness and inerpretability of our model with
extensive expenments.  The code 1s avalable at
htips:/github.com/astro-ahao/mucko.

1 Introduction

Visual question answering (VQA) [Antol er al., 2015] is an
attractive research direction aming to joantly analyze mults-
modal content from images and natural language. Equipped
with the capacities of grounding, reasoning and translating,
a VOQA agent is expected to answer a question in natural lan-
guage based on an image. Recent works [Cadene er al., 2019;

" Egual costribation.
' Comresponding author.
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An illustration of our motivation.  We represent an im-
age by multi-layer graphs and cross-modal knowledge reasoning is
conductad on the graphs 1o infer the optimal answer,

Figure 1:

Li er al.. 2019b; Ben-Younes et al, 2019] have achieved
great suecess in the VQA problems that are answerable by
solely referring to the visible content of the image. How-
ever, such Kinds of models are incapable of answering ques-
tions which require external knowledge beyond what is in the
image. Considering the question in Figure 1, the agent not
only needs 10 visually localize “the red cylinder’, but also to
semantically recognize it as “fire hydrant’ and connects the
knowledge that “fire hydrant is used for firefighting'. There-
fore, how 10 collect the question-orented and information-
complementary evidence from visual, semantic and knowl-
edge perspectives is essential to achieve general VQA.

To advocate rescarch in this direction, [Wang et al., 2018]
introduces the ‘Fact-based” VQA (FVQA) task for answering
questions by joint analysis of the image and the knowledge
base of facts. The typical solutions for FVQA build a fact
graph with fact triplets filtered by the visual concepts in the
image and select one entnty in the graph as the answer. Ex-
isting works [Wang eral., 2017; Wang et al., 2018] parse the
question as keywords and retrieve the supporting-entity only
by keyword masching. This Kind of approaches is vulnera-
ble when the question does not exactly mention the visual
concepts (e.g. synonyms and homographs) or the mentioned
information is not captured in the fact graph (e.g. the visual

attribute “red” in Figure | may be falsely omitted), To re-
solve these problems, [Narasimhan ¢ al., 2018] introduces
visual information into the fact graph and infers the answer
by implicit graph reasoning under the guidance of the ques-
tion, However, they provide the whole visual information
equally to ecach graph node by concatenation of the image,
guestion andd entity embeddings.  Actually, only pant of the
visual content are relevamt to the question and a cenain entity
Moreover, the fact graph here is still homogencous since each
node is represented by a fixed form of image-question-entity
embedding, which limats the model’s fexabality of adaptively
captuning evidence from different modalities.

In this work, we depact an image as a malti-modal hetero-
gencous graph, which conmtains multple layers of information
corresponding to different modalities. The proposed model is
focused on Mulri-Layer Cross-Modal Knowledge Reasoning
and we name it as Mucko for short. Specifically, we encode
an image by three layers of graphs, where the obpect appear-
ance and their relationships are kept in the viswal kver, the
high-level abstraction for bridging the gaps between visual
and factual information is provided in the semantic laver,
and the comesponding knowledge of facts are suppornted in
the facr layer. We propose a modality-aware heterogencous
graph convolutional network to adaptively collect comple-
mentary evidence in the mult-layer graphs. [t can be per-
formed by two procedures. Farst, the Intra-Modal Knowledge
Selection procedure collects question-onented information
from cach graph layer under the gusdance of question; Then,
the Cross-Modal Knowledge Reasoning procedure caplures
complementary evidence across daflerent layers.

The man contributions of this paper are summarnzed as
follows: (1) We comprehensively depict an image by a het-
crogencous graph containing multiple layers of information
based om visual, semantic and knowledge modalities, We
consader these three modalities joantly and achieve sigmificant
improvement over state-of-the-art solutions. (2) We propose a
modality-aware heterogencous graph comvolutional network
to capture question-oriented evidence from different modal-
mies. Especially, we leverage an attention operation in each
comvolution kayer to select the most relevant evidence for the
given question, and the convolution operation is responsable
for adaptive feature aggregation, (3) We demonstrate good
mterpretability of our approach and provide case study in
deep msaghts, Our model automatscally tells which modaliy
(visual, semantic or factual) and entity have more contnbu-
tions to answer the question through visualization of attention
weights and gate values.
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Abstract

Fact-based Visual Question Answering (FVQA) re-
quires external knowledge beyond visible content
1o answer questions about an image, which is chal-
lenging but indispensable 1o achieve general VQA.
One limitation of existing FVQA solutions is that
they jointdy embed all Kinds of information with-
out fine-grained selection. which introduces unex-
pected noises for reasomng the final answer. How
1o capture the guestion-oriented and information-
complementary evidence remains a key challenge
1o solve the problem. In this paper, we depict
an image by a multi-modal heterogencous graph,
which contains multiple layers of information cor-
responding to the visual, semantic and factual fea-
tures, Om top of the multi-layer graph representa-
tions, we propose a modality-aware heterogencous
graph comvolutional network to capture evidence
from different layers that is most relevant to the
given question. Specifically, the intra-modal graph
convolution selects evidence from cach modality
and cross-modal graph convolution aggregates rel-
cvamt information across different modalities. By
stacking this process multple times, our model
performs iterative reasoning and predicts the opti-
mal answer by analyzing all question-oriented ev-
idence. We achieve a new state-of-the-ant perfor-
mance on the FVQA task and demonstrate the ef-
fectiveness and interpretability of our model with
extensive experiments, The code is available ot
https://github.com/astro-zihao/mucko,

1 Introduction

Visual guestion answering (VQA) [Antwol er al.. 2015] is an
attracuve rescarch direction aiming to jointly analyze mult-
modal content from images andd natural language. Equipped
with the capacities of grounding, reasoning and translating,
a VQA agent is expected 10 answer a question in natural lan-
guage based on an image. Recent works [Cadene e al., 2019,
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Figure |: An illustration of our motivation. We represent an im-
age by multi-layer graphs and cross-modal knowdedge reasoning is
conducted oa the graphs 10 infer the optimal mnswer.

Li er al.,, 2019b; Ben-Younes er al., 2019] have achieved
great success in the VQA problems that are answerable by
solely referming to the visible content of the image, How-
ever, such kinds of models are incapable of answering ques-
tons which require external knowledge beyond what is in the
mmage. Consadening the question in Figure 1, the agent not
only needs 1o visually localize “the red cylinder’, but also to
semantically recogmize it as “fire hydramt” and conmects the
knowledge that ‘fire hydramt is used for firefighting’. There-
fore, bow to collect the guestion-oriented and information-
complementary evidence from visual, semantic and knowl-
edge perspectives is essential to achieve general VQA.

To advocate research in this direction, [Wang et al., 2018]
introduces the “Fact-based” VQA (FVQA) task for answering
questions by joint analysis of the image and the knowledge
base of facts. The typical solutions for FVQA build a fact
graph with fact triplets filtered by the visual concepts in the
image and select one entity in the graph as the answer. Ex-
isting works [Wang e7 al.. 2017; Wang er al.. 2018] parse the
question as keywords and retricve the supporting-entity only
by keyword matching. This kind of approaches is vulnera-
ble when the question does not exactly mention the visual
concepts (e.g. synonyms and homographs) or the mentioned
information is not captured in the fact graph (e.e. the visual

WA TTERE : 532K
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question and entity embeddings. Actually, only part of the
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focused on Mulri-Layer Cross-Modal Knowledge Reasoning
wind we pame it as Mucko for shont, Specifically, we encode
n image by three layers of graphs, where the object appear-
wnce and their relationships are kept in the viswal layer, the
high-level abstraction for bridging the gaps between visual
wnd factual information is provided in the semantic Liver,
and the corresponding knowledge of facts are supported in
e fact layer. We propose a modality-aware helerogencous
graph comvolutional network to adaptively collect comple-
mentary evidence in the multi-layer graphs, It can be per-
formed by two procedures. First, the Intra-Modal Knowledge
Selection procedure collects question-onented information
l'mmudn graph layer under the guidance of question; Then,
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follows: (1) We comprehensively dqm.l an image by a het-
mrogencous graph containing mubltiple layers of information
based on viswal, semantic and knowledge modalies. We
ponsider these theee modalities joantly and achicve significant
improvement over state-of -the-art solutions. (2) We propose a
modality-aware heterogencous graph comvolational network
[0 capture question-oriented evidence from different modal -
[ties. Especially, we kverage an stiention operation in cach
convolution layer to select the most relevant evidence for the
given question, and the convolution operation is responsible
for adaptive feature aggregation. (3) We demonstrate good
mterpretabality of our approach and provide case study in
Jeep insights. Our mode] automatically tells which modality
(visual, semantic or factual) and entity have more comtriba-
(bons to answer the question theough visualization of attention
weights and gate valwes,
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Visual Question Answering. The typical solutions for
VQA are based on the CNN-RNN architecture [Malinowski
et al., 2015] and leverage global visual features to repre-
sent image, which may introduce noisy information. Van-
ous attention mechanisms [ Yang et al., 2016; Lu et al., 2016;
Anderson et al., 2018] have been exploited to highlight vi-
sual objects that are relevant to the question. However, they
treat objects independently and ignore their informative rela-
tionships. [Bauaglia er al., 2018] demonstrates that human's
ability of combinatorial generalization highly depends on the
mechanisms for reasoning over relationships. Consistent with
such proposal, there is an emerging trend to represent the
image by graph structure to depict objects and relationships
in VQA and other vision-language tasks [Hu er al., 2019b;
Wang er al., 2019a; Li et al., 2019b). As an extension, [Jiang
et al., 2020] exploits natural language to enrich the graph-
based visual representations. However, it solely captures the
semantics in natural language by LSTM, which lacking of

Ne-grained correratons wi € visual miormation. g0
"ONC SICp Turther, we depict an image by multiple layers ol
m%hs from visual, semantic and factual perspectives to col-
lect fine-grained evidence from different modalities.

~ Helerogencous Graph Neural Networks. Graph neu-

X TIE

~ S SZ S N
ETHRMA R [ ETIE
Fact-based Visual Question Answering. Human can cas-
ily combine visual observation with external knowledge for
answering questions, which remains challenging for algo-
rithms. [Wang et al., 2018] introduces a fact-based VQA
task, which provides a knowledge base of facts and associates
each gquestion with a supporting-fact. Recent works based
on FVQA generally select one entity from fact graph as the
answer and falls into two categories: query-mapping based
methods and learning based methods, [Wang er al,, 2017] re-
duces the question to one of the available query templates and
this limits the types of questions that can be asked. |Wang et
al., 2018] awtomatically classifics and maps the question to
a query which does not suffer the above constraint. Among
both methods, however, visual information are used to ex-
tract facts but not introduced during the reasoning process.
[Narasimhan er al., 2018)] applies GCN on the fact graph
where each node is represented by the fixed form of image-

quc&lmn cnul\ unhcddmg tjm\g\g, ;hg visual info mm! n

layer graphs and E‘tfoml cross-modal_heterogencous graph
reasoning on them to capture complementary evidence from
different layers that most relevant to the question.

X tum in the last few
7E'I"*£‘] @?ﬂigém %ﬁ;ﬁ with homogencous
‘gmn—wwwgmwm—gmm\—u\—wwE common in the real
world, [Schlichtkrull er al., 2018) generalizes graph convo-
lutional network (GON) 10 handle differemt relationships be-
tween entities in a knowledge base, where each edge with
distinct relationships is encoded independently. [Wang e al.,
2019b; Hu et al., 2019a) propose heterogencous graph atten-
tion networks with dual-level attention mechanism.  All of
these methods model different types of nodes and edges on
a unified graph. In contrast, the heterogencous graph in this
o aine svere ol nnarar O

consists of nodes and edges coming from different_modals-
ties. For this specific constrain, we s¢ the intra-modal

and cross-modal graph convolutions for reasoning over such

multi-modal heterogencous graphs.
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Mucko: Multi-Layer Cross-Modal Knowledge Reasoning for Fact-based Visual
Question Answering

Cross-Modal Heterogencous Graph Reasoning

Multi-Modal Heterogencous Graph Construction

Visual Graph -
et Rttty - Intra-Modal Cross-Modal
AN Knowbedge Schection Knowledge Reasoning
Object Reglons e
fire hydrat ) - -
of Visual-to-Fact Conv.
penon I/
onr 17 atp R /’- 'Q.
Candidate Facts Fact Graph
<Fire hydrant, UsedFor, Fircfighting: ~ Red o7 e
<Fire hydrant, AtLocation, Strect N }{ ::"ﬁuh‘ Fact-to-Fact ) >
Knewledge  Fact Retrieval _ <Firc hydrant, HasProperty, Red>  — 0y 3 ¥ — A Aggr. =
_— ] - —
base of facts ne Vire hydraat
<« R > . LsedFor,
Car, UsedFor, Transport Car JEEL Trampont -~ UsodEor , g Traaspert . m m
Dense Captions Semantic Graph 2 m o Answer
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Figure 2: An overview of our model. The model contains two modules: Multi-modal Heterogeneous Graph Construction aims to depict an
image by multiple layers of graphs and Cross-modal Hetegencous Graph Reasoning supports intra-modal and cross-modal evidence selection.
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Seeing Is Knowing! Fact-based Visual Question Answering

Using Knowledge Graph Embeddings
arxiv

Our approach

The proposed architecture for FVQA is shown in Fig.@] As
shown, a given image / and query ¢ are combined via coAt-
tention to form two entity query vectors, fxve(g. /) and
fxp(q.I). The KG is then queried for the answer to the
question, according to

argmax fxve(q, I)Te grvelq) =1
. ' ecl -
y(q|l) = = (2)
argmax fxp(q. I)"e  gxvel(q) =0
cef
where the gating function gxvc(q) € {0.1} is equal to |
if the text of the question indicates that the answer is visible
in the image, equal to ) otherwise. The rest of this section
addresses representations of the entities, image, and query,
the information fusion functions, the gating function, and the
loss function.

CogModal



—RIEXHIER—757& (SEHI 53 )

Transformer Reasoning Network for Image-Text Matching and Retrieval
2020 ICPR

Region and Word Features

I and C' descriptions come from state-of-the-art visual and
textual pre-trained networks, Faster-RCNN with Bottom-Up
attention, and BERT respectively.

Faster-RCNN [31] is a state-of-the-art object detector. It
has been used in many downstream tasks requiring salient
object regions extracted from images. The authors in [32]
introduced bottom-up visual features by training Faster-RCNN
with a Resnet-101 backbone on the Visual Genome dataset
[33]. Using these features, they were able to reach remarkable
results on the two downstream tasks of image captioning and
visual question answering. Therefore, in our work we employ
the bottom-up features extracted from every image as image
description I = {rg.ry,...7, }.

Structured Multi-modal Feature Embedding and Alignment for Image-Sentence Retrieval
2020 ACM MM

3.1.1 Visual representations. To better represent the salient entities
and attributes in images, we take advantage of bottom-up-attention
network [1] to embed the extracted sub-regions in an image. Specif-
ically, given an image I, we extract a set of image fragment-level
sub-region features V = {0y, -+ ,0x}, v; € R2048 where K is the
number of selected sub-regions, from the average pooling layer in
Faster-RCNN [25].
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We also report the quannt.mve performance on the challeng-
ing OK-VQA dataset in . We compare our model with three
kinds of existing models, including current state-of-the-art VQA
models, knowledge-based VQA models and ensemble models. The
VQA models contain Q-Only , MLP . BAN , MUTAN

The knowledge-based VQA models consist of ArticleNet
(AN), BAN +A N and MUTAN + AN. The ensemble models , Le.
BAN/AN oracle and MUTAN/AN oracle, simply take the raw Arti-
cleNet and VQA model predictions, taking the best answer (com-
paring to ground truth) from either. We report the overall perfor-
mance (top-1 and top-3 accuracy) as well as breakdowns for each
of the knowledge categories (top-1 accuracy). We have the follow-

Ling two observations from the resylts:
ns all the compared

Ei»ﬁ ﬁ)ﬁﬁ?’éi‘f l:b—n %ﬁ*ﬁ state-of-the-art mod-

els (BAN and MUTAN) specifically designed for VQA tasks, they
get inferior results compared with ours, This indicates that general
VQA task like OK-VQA cannot be simply solved by a well-designed
model, but requires the ability to incorporate external knowledge
in an effective way. Moreover, our model outperforms knowledge-
based VQA meodels including both single models (BAN+AN and
MUTAN + AN) and ensemble models (BAN/AN oracle and MU-
TAN/AN oracle), which further proves the advantages of our knowl-
edge incorporating mechanism based on both multimodal knowl-
edee eranhs and memorv-enhanced recurrent reasoning network

. ent o our model on UK-VUA 1S not that
E’ #%ﬁﬁ ) the performance on FVQA and Visual7W-
” phenomenon is mostly due to the follow-
ing two reasons: (1) Questions in the OK-VQA dataset are more
diverse and complex, which is more challenging for machines to
understand accurately. The questions in FVQA and Visual7W-KB
are generated when given the images and supporting facts upon
the pre-defined templates or relations. This mechanism constrains
the answers in a specific knowledge base and guides the model
to operate in a reverse way of the question generation process
to predict the correct answers with high probability. On the con-
trary, questions in OK-VQA are totally free-form ones that gener-
ated by MTurk workers and thus containing more unique questions
and words with less bias compared with other datasets. This in-
creases the difficulty to understand the questions accurately. (2)
OK-VQA requires a wide range of knowledge beyond a specific
knowledge base. Looking at the category breakdowns in
baseline models achieve relatively high performance for SR, CF
GHLC, PA and WC categories while our model performs better for
the remaining categories. Since the baseline models refer to the
Wikipedia while our model refers to ConceptNet, the performance
in the categorv breakdowns perhaos sugeests that each knowledee
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Ablation TABLE IV

ABLATION STUDY ON VALIDATION SET OF VISDiIAL v 1.0,

Model MRR R@1 R&S R@EI0  Mean  NDCG
ObjRep 6384 4983 8137 9029 407 5548
RelRep 6363 4925 8101 9034 407 5502
VisNoRel 6397 4987 8174 9060 400 5673
VisMod 6411 SOO4 8178 9052 399 5667
GiCap 6003 4534 766 8137 478 SH0d
LoCap 6095 4643 7845 8817 462  SLT2
SemMaod 6107 4669 78.56 =800 4.9 5110

wio ELMo 6367 4989  BD44  NURE 404 S6.41

. 074 8210 I 391 57
Vanantsa'réﬁ 5079 8241 9L10 390 5824

B. Ablation Siudy

We ako conduct an ablation study to further exploat the
mfluence of the essential components of DuwlVD, To be
mentioned, we use Dual VD-LF as the full model and apply the
same descriminative decoder for all the following vanations:

Object Representation (ObjRep): this model uses the av-
eraged object features 1o represent the image. Question-driven
attention is applied to enhance the object representations.

Relation Representation (RelRep): this model applies
averaged relaton-aware object representations as the image
representation without fusing with original object features,

Vision Module without Relationships (VisNoRel): this
model contans the full Vision Module, differing in that the
relation embeddings are replaced by unlabeled edges.

Visual Module (VisMod): this is our full visual module,
whach fuses objects and relation features.

Global Caption (GICap): this model uses LSTM to encode
the global caption to represent the image.

Local Caption (LoCap): this model uses LSTM 10 encode
the local captions to represent the image.

Semantic Module (SemMod): this is our full semantic
module, which fuses global and local features.

w/o ELMo: this is our full model based on late fusion
encoder, differing in that the word embedding GloVe+ELMo
is replaced by GloVe.

DualVD-LF (full model): this is our full model, which
incorporates both the visual module and semantic module

NREL T L 4

Table IV shows the ablation results on VisDial v1.0 vali-
dation set. Models in the first block are designed to evaluate
the influence of key components in the visual module, The
limitation for ObjRep is that it only mines the pivotal features
from isolated objects and ignores the relational information,
which achieves worse performance at all metncs compared to
VisMod. RelRep considers the relationships by introducing re-
lation embedding for aggregating the object features. However,
empirical study indicates that enhancing object relationships
while weakening object appearance is still not sufficient to
represent the visual semantics for better performance. Vis-
NoRel takes a step further by adaptively fusing the information
from both object appearance and full-connected neighbors,
aggregating all the neighborhood features directly without
relation semantics, This strategy achieves slight improvement
compared with ObjRep. VisMod moves a step further by adap-
tively fusing the information from both object appearance and
full-connected neighbors, aggregating all the neighborhood
features with relational information, which achieves the best
performance compared to above two models.

Orthogonal to visual part, models in the second block are
conducted to test the influence of key components in the

semantic part. The overall performance of cither GICap or
LoCap decreases by 1% and 0.15% respectively, compared to
their integrated version SemMeod. which adaptively selects and
fuses the task-specific descriptive clues from both global-level
and local-level captions.

We compare the performance of VisMod and SemMaod
with DualVD-LF. By adaptively select information from the

ViSual and the semantc module, DualvVD-LF resuis m 4

great boost compared to SemMod and a relatively slight
boost compared to VisMod. This unbalanced boost indicates
that visual module provides comparatively richer clues than
semantic module. Combining the two modules together gains

an extra boost, because of the complementary information DT

darivad from diffarant modalitiae Ru savine mars attantian an

>

Modal

GROUP

N



— R AYE R —3E!

Interpretation

I

Caw ' Viveal Gragh e e Crgh__ Our model is interpretable by visuali/inl. the attention

ST T Ll T Dl wclghls and gate \aluu in the rcasomng procc\s From case
(L) Q.‘_ . an s g

e n

Y

slghl\ (1 Mucko is capable to re\cal lhe knowledge selec-

Ouenthon: Mhkh Ak W

o Loy e . A —n . & tures the most relevant visual, scm;mlic and factual evidence
e ot e A e el v 7 TP W il gz as well as complementary information across three modali-

ties. In most cases, factual knowledge provides predominant
~ clues compared with other modalities according to gate val-
“am -
ues because FVQA relies on external knowledge to a great
extent. Furthermore, more evidence comes from the semantic
o — : o'-f‘-;----- s modality when the question involves complex relationships.
e ol wid g v 1) L . . e o WA ol vl 25N
For instance, lhv. \uond question mvol\'mg thc rclallonshlp

OB with Muckn. Mucku cnllccls rclcv;ml visual and seman-
tic evidence to make each entity discriminative enough for
predicting the correct answer while OB failing to distinguish
representations of ‘laptop” and *keyboard” without feature se-

- - R R e ]
l.- ol e d‘m .Ln LA

fection. (3) Mucko Tails when mulhple answers are rea-

sonable for the same question. Since both ‘wedding” and
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Parameter Analysis

#Retrieved facts @50 @100 @150 @200
Rel@] (top-1 accuracy) | 55.56 70.62 65.94 59.77
Rel@1 (top-3 accuracy) | 64.09 81.95 73.41 66.32
Rel@3 (top-1 accuracy) | 5893 73.06 70.12 65.93
Rel@3 (top-3 accuracy) | 6850 8594 8143 74.87

Table 3: Overall accuracy with different number of retrieved candi-
date facts and different number of relation types.

#Steps 1 2 3
top-1 accuracy | 62.05 73.06 7043
top-3 accuracy | 71.87 8594 81.32

Table 4: Overall accuracy with different number of reasoning steps.
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Transformer Reasoning Network for Image-Text Matching and Retrieval

FMrsEFRiE L

For this reason, inspired by the evaluvation method pre-
sented in [2], we employed a common metric often used in
information retrieval applications. the Normalized Discounted
Cumulative Gain (NDCG). The NDCG is able to evaluate the
quality of the ranking produced by a certain query by looking
at the first p position of the ranked elements list. The premise
of NDCG is that highly relevant items appearing lower in a
scarch result list should be penalized as the graded relevance
value is reduced proportionally 1o the position of the result.

The non-normalized DCG until position p is defined as
follows:

g
rel,
DCG,, ; (5)
d .E; lnv;:zu' +1)

where rel, is a positive number encoding the affinity that the
i-th element of the retrieved list has with the query element.
The DCG is agnostic upon how the relevance is computed. The
NDCG,, is computed by normalizing the DCG,, with respect to
the Ideal Discounted Cumulative Gain (IDCG), that is defined

as the DCG of the hist obtained by sorting all its elements by
descending relevance:

DCG,
IDCG,

P

NDCG,, = (6)

IDCG,, is the best possible ranking. Thanks to this normal-
ization, NDCG,, acquires values in the range [0, 1]

2020 ICPR
SOTAZe 52

TABLE |
IMAGE RETRIEVAL RESULTS ON THE MS-COCO DATASET,

Recall@ K NDOCG
Model K=1 K=5 K=10 ROUGE - L SPICE
IK Test Ser
VSEO [1) 437 M4 89.7 0.702 0616
VSE++ |1] 520 843 920 0712 0617
VSRN |7) oD% X843 94 0723 0620
TERN (Owurs) 519 8Se6 936 0,725 0653
SK Test Set
VSEO (1) 220 50.2 642 0.633 059
VSE++ (1) 303 M4 724 0.656 0577
VSRN [7] 379 68.5 794 0.676 0.596
TERN (Ours) 287 9.7 2.7 0.665 0600

T IR

Query. An salng area with & table and a few chars

Pz & Enample of smage roneval rowits for o couple of guery caponn. The red marbed smuges regresest e MS OOCD proand traths, and ey e md
mevessarily the best sl in these soemaries. B Tl e the very Sed ponitien, we find som ansbieng sof s g, These st commnom exmoples

whese NDOG moally saccond over the Rocall 0K menriy '
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Abstract

Fact-based Visual Question Answering (FVQA) re-
quires external knowledge beyond visible content
to answer questions about an image, which is chal-
lenging but indispensable to achieve general VQA,
One limitation of existing FVQA solutions 1s that
they jointly embed all kinds of information with-
out fine-grained selection, which introduces unex-
pected noises for reasoning the final answer. How
to capture the question-oriented and information-
complementary evidence remains a key challenge
to solve the problem. In this paper, we depict
an image by a multi-modal heterogeneous graph,
which contains multiple layers of information cor-
responding to the visual, semantic and factual fea-
tures. On top of the multi-layer graph representa-
tions, we propose a modality-aware heterogencous
graph convolutional network to capture evidence
from different layers that is most relevant to the
given question. Specifically, the intra-modal graph
convolution selects evidence from each modality
and cross-modal graph convolution aggregates rel-
evant information across different modalities. By
stacking this process multiple times, our model
performs iterative reasoning and predicts the opti-
mal answer by analyzing all question-oriented ev-
idence. We achieve a new state-of-the-art perfor-
mance on the FVQA task and demonstrate the ef-
fectiveness and interpretability of our model with
extensive experiments, The code is available a

L S L LR T ST TR B

BLBATN N
FRE S

Conclusion

In this paper, we propose Mucko for visual question answer-
ing requiring external knowledge, which focuses on multi-
layer cross-modal knowledge reasoning. We novelly de-
pict an image by a heterogeneous graph with multiple lay:
ers of information corresponding to visual, semantic and fac-
tual modalities. We propose a modality-aware heterogeneous
graph convolutional network to select and gather intra-modal
and cross-modal evidence iteratively. Our model outperforms
the state-of-the-art approaches remarkably and obtains inter-
pretable results on the benchmark dataset.

B &
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¥ m

ation. However, our model has infe-

rnor periormance wnen open-domain knowledge is required. How -
to adaptively incorporate diverse knowledge bases that covering Z}f,mﬁ:j FR
commonsense, Wikipedia knowledge and even professional knowl-
edge for KVQA tasks will be our future work. ?ﬁ m #ﬁ?ﬂ
N
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The main contributions are summarized as follows: (1)
We exploit the possibility of cognition in visual dialogue by
depicting an image from both visual and semantic views,
which covers a broad range of visual content referred by
most of questions in the visual dialogue task: (2) We propose
a hierarchical visual information selection model, which is
able to progressively select question-adaptive clues from
intra-modal and inter-modal information for answering di-
verse questions. It supports explicit visualization in visual-
semantic knowledge selection and reveals which modal-
ity has more contribution to answer the question; (3) The
proposed model outperforms state-of-the-art approaches on
benchmark visual dialogue datasets, which demonstrates the
feasibility and effectiveness of the proposed model. The
code 1s available at hups://github.com/JXZe/DualVD.

BH 472 X -Contribution

The main contributions are summarized as follows:

(1) We exploit the possibility of cognition theory in visual
dialogue by depicting an image from both visual and semantic
views, which covers a broad range of visual content referred
by most of questions in the visual dialogue task:

(2) We propose a hierarchical visual information selection
module DualVD, which can select question-adaptive clues for

answering diverse questions. It supports explicit visualization
in visual-semantic knowledge selection and reveals which
modality has more contribution to answer the question;

(3) We propose two novel models for the visual dialogue
task by integrating our proposed DualVD module with two
typical frameworks: DualVD-LF based on Late Fusion frame-
work and DualVD-MN based on Memory Network framework.
The proposed models outperform state-of-the-art approaches
on three visual dialogue datasets, including VisDial v0.9,
VisDial v1.0 and Visual-Q, which demonstrates the feasibility
and effectiveness of the proposed models.

A previous version of our dual encoding model was pub-
lished in AAAI 2020 [ 14]. In this extension version, we extend
our DualVD on the memory network for the visual dialogue so
that we can pay more attention on “dialogue history reasoning™
as well as the “visual reasoning”. This also suggests that our
DualVD module is complementary with the improvements in
dialogue modeling and can be plugged into existing visual
dialogue models. We also conduct more in-depth experiments
and improve the performance on the visual dialogue task. The
proposed dual encoding module shows great generalization
ability and can be applied to existing visual dialogue models
for complementary benefits.

»
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R I X -Related Work,

Visual Question Answering. The typecal solusons for
VQA are based om the CNN-RNN archstecture [ Malinowski
et al, 20015]) and leverage global visual features 1o repre-
soot image. which may introdoce noasy nformation.  Vari-
ous attention mechanisms [Yang er ol 2016; Lu er al, 2016;
Andorson e al.. 2018] have been exploited to highlight vi-
sual objocts that are relevant 1o the guestion. However, they
treat objects independently and ignore their informative rela-
tiomships. [Battaglia er ol 2018] demomstrases that human’s
abality of combenatonal gencralization highly depends on the
mochamasms for re g over rels ships. Consastent with
such proposal, there is an emergang trend 10 repeesent the
image by graph structure 1o depict objects and relationships
in VQA and other visson-language tasks [Hu e al.. 20196
Wang et al.. 2019a: Li et al.. 2019b). As am extension. [Jiang
et al.. 2020] explodts mataral lamguage to enrich the graph-
based visual representatsons. However, it solely captures the
semantics in matural lamguage by LSTM. which lacking of
fime-grained correlations with the visual information. To go
one step further, we depict an image by multiple layers of
graphs from visual, semantic and factual perspectives to col-
lect fime-graned evidence from different modalities.

Fact-based Visual Question Answering. Humanm can cas-
ily combine visual obscrvation with external knowledge for
answernng questions, which remains challengang for algo-
rithoes. |\Vang et al.. 2018] inroduces a fact-based VQA
task, which provides a knowmiladge base of facts and associates
cach question with a supportmg-fact. Recent works based
on FVOQA gencrally scloct one entity from fact graph as the
answer and falls imo two categorics: query-mapping based
methods and keaming based methods. [Wang «7 al., 2017] re-
duces the guestron 1o one of the available guery templasces and
this limits the types of guestions that can be asked. [Wang er
wl, 2018] suvtomatically classifics and maps the question 1o
a query which does sot suffer the above Constraant. Among
both methods, however, visual informatiom are used o ex-
tract facts but not ntroduced during the reasoming process.
[Narasimhan «7 al.. 2018] applics GON om the fact graph
where cach node is represented by the fixed form of image-
question-emtity embedding. However, the visual informatson
s wholly provaded which may introduce rodundamt snforma-
Bon for prediction. In this paper. we decipt an image by multi-
layer graphs and perform cross-modal hetcrogencoas graph
reasonsng on them o capture complementary cvidence from
dafferent layers that most relevant to the guestson.

Heterogencous Graph Neural Networks, Graph ncu-
ral nctworks arc gasmang fast meomentueem an e last few
years [Wu e al, 2019]. Compared with bomogemcoams
graphs. h e graphs are mose commmon in the real
world. [Schlichakrull er ol , 2015] genceralizes graph convo-
lutional nctwork (GON) o bandile different relatiomships be-
Twoen cnidics an a keowladge base, where cach odge with
distinct relatonships is encoded imdependenmly. [Wang er ol .
20196: Hu ¢ al.. 2019a] propose hetcrogencous graph aticn-
tion noetworks with dual-level attemtion mechanism. Al of
these methods meodel different types of nodes amd odges on
a unaficd gragh. In contrasz, the heterogencous graph in thes
work contasas multiple layers of subgraphs and cach kayer
comsists of modes odges comang from Efforemt msodali-
ties. For thas specific constrain, we propose the intra-modal
amd cross-modal graph convolutions for reasoning over such
mudti-meodal heterogencous graphs.

BA F472 X -Related Work.

Visual Question Answering (VOQA) focuses on answenag
arbitrary natural language questions coaditsoned on an image
The typcal solutions in VQA baakd multi-modal representa-
thoms upom CNN-RNN architecture [1]. [15]. [16). They adopt
deep Comvolutional Neural Networks (CNNs) 1o represest
images and Recurremt Newral Networks (RNNs) 10 represent
questions. The extracted viswal and textual feature voctorns are
then josntly embedded 10 infer the amswer. One of the key
challenges in VQA is o effectnely uadentand and cutract
vissal features that better adapt 1o the guestion. Existimg
approaches mcorporate context-aware visual featares and the
tremd for meodeling the visual context is progreessnvely froes
global level o finc-graimed lovel. For example. [15] applies
ONN features of the whole image as global comtext, [17)] and
[15] adopt patches and salicnt objects leamod by amcntion
mechanesm as the regiom context, and [19]) exploits inter-
obgect relacaships via graph amention networks 10 model
the relatiomal contest, However, how 1o leverage the exsernal
vissal-semantic knowledge o leam more informative rela-
wosal repeesentations aad combine themn with higherdevel
visual features for better semantic understanding Bas not boen
wdll exploited yet

Ancther emerging lne of woek repeesents visual contest
coxpicitly by matural lasguage and sobves VQA as a road-
ing comprehension peoblem. In [20], the image is wholly
comvenad o descrptive captions, which preserves informa-
tom at semastic-level in tevtual doesain, However, this Lsd
of approaches wse the gpenerated captioms. which could moe
be corect as we deswred, and that they fully sbandon the
informative and sebdde visual features, Besides the specilic
tanks, owr model has notable progress compared 5o the above
approaches. We adopt dual cacodmg mechanism o provide
both appearance-level and semantsc-devel vissal information,
o that 31 incoeporaies the strong poists of the above two Kinds
of approaches

Visual Dialogue sims 10 amswer 4 cumrent quesios Con-
ditioned om an image and dialogee hacey. Compased wath
Visual Quostion Answering taek. Visual Dialogee involves
multiqound dialogue history as comtext besades the image
and the guestion. Most existing works are based on Lue
fusion framework and foces on modeling the dialogue hissory
Soguential co-amention mechanism [10] enables the madel o0
identify guestion-relevam smage regions and dialogue history
10 keep the Galogue comastency. |9] mtrodoeces false respoase
in dulogue history for am advene critic on the historic cmror, To
imostigate somantic depeadoncies between entitses underlying
dalogue. (3] introduces an Expectation Maximazation (EM)
algocsthm 10 nfor the dsalogue strecture and the amwors via
praph ncural notworks. [21] proposed a novel image-question-
answer synergistic network 1o value the rode of the answer
for peecase vissal dualogue. The most rocest woeks [22) 23],
[24]) proposad graph inference or causal inlcrvention 1o reason
abowut the answer on the image and &alogwes.

Visual Relationship Understanding aumns 10 represent and
infer the relationshups between two objects in aa image, which
is cntical 1o improve Al's capacity of combinatorial general-
ization by leaming towards relational visual representations,
In the carly works [27) shallow geometne relationships (c.g,
below, above, and inade) hased on spatial information have
been explored 1o improve viswal segmentatson, Laser on, visual
relationships have been extended to nicher definition [28),
including geometric, comparative, composition, interactson,
ete. One limitation of the above approaches is that they
merely represent the viswal relatiosships by ngsd-caegonzed
Iabels, which are &fficult 10 accunately model the subtle
relationships conditioned om the comtexts. For example, an
image of <woman, nde, borse> and ancther image of <man,
nde, motorcycle> have quite different vissal appearance and
semantics even they beloag 10 the same relationshap. Even foe
the same visual appearance, it may comtain different relation-
ships. For example. an image where a boy is kicking a foothall

Dense Captioning aims 10 joanly localsze ad describe im-
age regions im natural lasgwage. It provides fine-grained viswal
descriptions for cach local image regron compared with object
detectson and mmage captiosing, The task geseralizes object
detection when the descriptioms are simple labels and image
captioning when ome peedicted region covers the full image. It
simultancously takes the obgect detection and description task
into accoumt. Previous work on holistic description of viswal
clement [32), [33). [34] are enther limised to salient objects
of mmages, of end 10 broadly depsct the entire visual scene
These descnptions are far from complete visual understanding
[3) proposad 1o wse dense captioas for better imerprotation of
image coment, The model consasts of a Fully Coavolutional
Localization Network and an LSTM based Language Model
that produces both boundisg boxes for interest regrons and
associmed captions i a single forward pass. In this work, we
leverage dense captioms 10 describe the semantic-Jevel viswal
content for the local relationships between objects. In this
way, visual mformation s repecsented in hnguistic form that

Is closer 10 haman's cogmition.
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TABLE | TABLE 1I TABLE 111
RESULT COMPARISON ON VALIDATION SET OF VISDIAL V0.9 RESULT COMPARISON ON TEST-STANDARD ST OF ViSDIAL V1,0 RESULT COMPARISON ON VALIDATION SET OF VISIIAL-Q
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C. Interpretability

A cntical advantage of DualVD lies in its interpretability:
DualVD is capable to predict the attention weights in the
visual module, semantic module and the gate values in visual-
semantic fusion. It supports explicit visualization and can
reveal DualVD's mode in information selection. We show the
visualization for success cases and failure cases of DualVD-LF
model in Figure 8 and Figure 9, respectively. Four meaningful
observations of our model are presented as follows:

Comprehensive visual-semantic clues, The visual fea-
tures at object-level, relanonship-level, and semantic-level
are preserved in the framework of DualVD, which enables
the DualVD-LF model to answer a wide range of visually
grounded questions through the dialogue. For instance, in
Figure 8, the third example (third and fourth rows in Figure 8)

Information selection mode. By selecting visual and se-
mantic information by gating mechanism, the DualVD-LF
model can reveal the mode in information selection for an-
swering the current question by visualizing the gate values,
We observe that the amount of information derived from each
module highly depends on the complexity of the question and
the relevance of the module content. More mformation will
come from the semantic module when the question involves

The critical role of visual information. From the vi-
sualization results, we find that the visual information is
more important than the semantic information in question
answering. In all the testing cases, the ratio of gate values of
the visual module is larger than that of the semantic module
and also that the differences between the two are not greatly
disproportionate. This demonstrates that more comprehensive
and accurate clues come from the visual information, though
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Failure case analysis. Since the visualization results ex-
plicitly show the visual and semantic clues the model focused
on, it provides us evidence to analysis the reasons for the
failure cases. In Figure 9, we show three failure cases from
three typical failure modes. We can see that our model can
accurately attend to the visual and the semantic information
that relevant to the questions in all the cases. In the first exam-
ple. the ground-truth answer is similar to the predicted answer.
This mode is so-called one-to-many problem in the dialogue
system. A second failure mode is due to the incomplete visual
information in the image. In the second example, the phone is
obscured by the face, which provides limited clues to predict
an exact answer for the question “Can you tell what Kind of
phone?’. The third mode is due to the lack of visual clues
for more accurate answer. In the third example, our model
accurately focuses on the “sky™ and predicts It is daytime”,
However, the image doesn’t provide extra evidence to infer
more precise time, i.e. “afternoon” in the ground-truth answer.
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It is impossible for us to accomplish the transformation of the whole

society overnight

It is impossible for us to transform the whole society overnight
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- Chinglish® L A 722 ZER &5 2 1212
We compare our single-model results with previous best published
results on VQA/GQA test-standard sets and NLVR2 public test sef,
and did one or two times.
FRIRF %
1.2 Z 3% native speakerBIX K, I AT FBAFaRZ FIR
QAR BEIREREXE, RXFRABIERLZMANIRA

3 BEZHEBIChinglishRZ, BEEMUMRZRITEXK

We compare our single-model results with pre-vious best
published results on VQA/GQA test-standard sets and
NLVRZpublic test set, and fried a couple of times.
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As we know, the channel gain varies much more slower than the
channel phase, and we have thousands of ways to prove it.

-,
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IRIEFXFRIZEERE, LEEZM MBS IRILFRTE
2RXBZLEFE]R, ~HEERZ~NMNLK
SERBIEBRZUR, MANEREIE

P T 2t ZE B 2R 2K
As we know, the channel gain varies much more slower than the channel phase.

XABIEBRMEIE:
Obviously, the channel gain varies much more slower than the channel phase:
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Now, we could use CoTNet model to predict the result of that dataset.

FEHEA T X :
s FE—~: HAMPBIRZELENY, EREXAAZTXER

3. Our Approach

In this section, we first provide a brief review of the
conventional self-attention widely adopted in vision back-
bones. Next, a novel Transformer-style building block,
named Contextual Transformer (CoT), is introduced for im-
age representation learning. This design goes beyond con-
ventional self-attention mechanism by additionally exploit-
ing the contextual information among input keys to facil-
itate self-attention learning, and finally improves the rep-
resentational properties of deep networks. After replacing
3 x 3 convolutions with CoT block across the whole deep ar-
chitecture, two kinds of Contextual Transformer Networks,
i.e., CoTNet and CoTNeXt deriving from ResNet [ '] and
ResNeXt [ 7], respectively, are further elaborated.
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TEMIEAT RIE X .
s FHEI. BUMANARNBEFITEXRANXNFEIFTHEHITRERE

a; = softmax(w! tanh(W,v; + W2q)) (1)

where W, W, and w, (as well as Wy,..., Wys, wy,, w,. mentioned below) are learned

parameters. q is question embedding encoded by the last hidden state of LSTM.

Bji = softmax(w; tanh(W3v! + W,q')) (2)

where v} = Ws[v;,7;; . ¢' = Ws|v;. q] and [+, -| denotes concatenation operation.

(t+1) (1) net (t):
"PJ _W“[mj .Cj h | (ll)
‘ (t
¢ = Z Wialm, ).r,k] (12)
kEN;

where N; represents a set of 1-hop neighboring nodes regarding the memory entity m;

and ¢’'** is the contextual memory representation. Then the updated memory is served

as the new knowledge memory used in the next reasoning step. CogModal
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Today's scene graph generation (SGG) task is sull
far from practical, mainly due to the severe training
bias, e.g.. collapsing diverse human walk on/ sit
on/lay on beach into human on beach. Given

such SGG, the down-stream tasks such as VOA can hardly
infer better scene structures than merely a bag of objects.
However, debiasing in SGG is not trivial because tradi-
tional debiasing methods cannot distinguish between the
good and bad bias, e.g., good context prior (e.g., person
read book rather than eat) and bad long-tailed bias
of) In this

(e.g., neardominating behin

a causal graph for SGG, and perform traditional biased
training with the graph. Then, we propose to draw the
counterfactual causality from the trained graph to infer
the effect from the bad bias, which should be removed. In

particular, we use Total Direct Effect as the proposed fi-
nal predicate score for unbiased SGG.

) model and thus can be widely

Juull | "¢,

By using the proposed Scene Graph Diagnosis toolkit on
the SGG benchmark Visual Genome and several prevailing
models, we observed significant improvements over the pre-
vious state-of-the-art methods.
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De O WU (X 10) s cumently » Senior Lachrer (Assistant Professar) and an ARC DECRA Fellow ot the Uniwversty of
Adelaide. He won the Australan Acedery of Sdence J G Russel Award in 2019, He s aiso & CIi of e Ausralen
Centre for Robotic Vislon (ACRY) and a Program Leader of Bhe Australan institute of Machine Learming (AL ). Before
hat, he workiad a5 & Posidoc Researcher in e Australon Contre for Visual Teohnologies (ACVYT) He recewed an MSg
I Giobal Computing and Meda Technoiogy, 8 MDD in Computier Scence bom the Uriversity of Bath [Unied Kingdom),
0 2011 and 2015 Ms work has Been puished In prestigous joumals and confsrences such as IEEE TPAML CVPR,
ICCV, ECCV and AAA

Research Interestes:

De. WAYS messarch inforeats ase manly In Computer Vision and NMachine Leaming Ma previous ressarch progects
OO MOdebng visual ODgecls tegirdiess Of GopsCive shles and Mage WAGIANGng Usng CONealual Oues. He s
curently working on the Vialon and Language problems, incudng image Cagtioning, Viausl Question Asswering, Viscal
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Idea List

c RIFPIRITRAERLE, TAREFRDNERIFRIAR . EEJFIEEL
¥ pI7EiE. WX BRITRI. HIITRIF,
HRE R

RETROANRR & BAAHE: #FE, BERBENE. NHITEE
FENEE: HIBHFEEERXNRKESBEEERABORX?
BRAE: SHMHE, SBXTUENRTAE KRNZEFNCE, MAEPRREE
BRI IIM: SKEFRG 30 58
BENEA: F2F LaTeX BE
EENSE: hexo §EBRRIS
tIRE
o 1EXit%l: 2013 Bengio KJ425E paperVAE R B-VAE 89 paper
o 3EEITH): VAE M3ELERE + BIRSR
o AFTH: ARPEK
o EBIMES: A2AK VAE A9 report
Hftr: 250 1CAI AR =
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Math List

- MEEMBEIKZFIR

s MREFEFEP I F A RITIES

AAFERDROEN 15, MEAMFSLR NAN, INFT? and BS «ORFIMER?
o 1 f(x. f(x') A f(x) DMOWEA—1LH 1/E
f(x)x f(x*)= | f(x)] x| f(x")]| x cos®=1x1xcosd = cosd
B f(x) x f(x*) ROTEMZE (-1, 1)
GBI, f(x)x f(x) BEBE [1,1)
o of' 0°) EZE (L, ¢)
¢ e NEER (i, oy
(B HFRBAM e, HHMBIME XL)
(M SFERBME L, HBRBAME (N + 1)e)
o B —log——r o MM [~log iy, ~logrrir). BD [~2log (e) + log (N + 1), 2log (¢) + log (N + 1)]

o BIR n BYEBPMR, B 1nfonce B Loss HERREERN
o MLEE® /G, f)xfO)/ rNBEE(-L, 1)

o L, = —log f:p(y-y,'r) RBEE | Iog\'.fl‘ log—

klfu'JT*y'VfT) . (N+1)e® "’
HrF 18, Loss NEXBEEET

. BN [~Zlog (e) + log (N + 1), £log (e) + log (N + 1)]
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English List

o« RRET W InIATEFE BIFEIEIF L

s MERXFRIIEFE. 4573

/S3=)

20195E8529H BHAPY TF43:34

» Note that the use of fasterRCNN and Skip-Gram for generic representation extraction
might be not optimal, but we empirically find they can already achieve satisfactory
performance. ( 3FECiEXARERIXER , MNAB RSB BRRSZE )

» Although similar ideas of gated feature fusion have been previously explored (Arevalo
et al. 2017), directly applying them to the fusion of metrics is infeasible. ( 3¥FBCHYE
SCRANSHIARIBUINGZE . RIT —RRIEHANRE )

» As the first work for end-to-end spoken question answering (SQA), our model gets the
results close to the performance of cascading ASR and QA models. Although the room
for improvement exists, it is a good first step towards end-to-end SQA. ( JFESHIEX

IRBITFSOTARSERNRE )
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Code List

e KVQA: Knowledge-aware Visual Question Answering (2019 AAAL)

o github 1118 ttpJ/m abilisc githut re e

o - * VQA1.0
MIBRWE
o VQA<p
* g :& ﬁ ﬁ #R jgi » FVQA: fact-based Visual Question Answering
o RIBTE 2018 FWMENOE T HEMINEN VOQA RIS
. * OKVQA
e Tutl*igg 1-r~|(:F( 331 Egi 4] [y Kyga aliena
o REASBMNMWRCIWEIHF
. RIMBRME o

o Visual Question Answering under the lens of logic (2020 ECCV)
o BFFMEBSO)MEINRE0)F
e VQA-360
o Visual Question Answering on 360° Images (2020 WACY)
o github TTH8: hitpJ//alier
* VQA-CP
o Don't Just Assume; Look and Answer: Overcomeng Priors for Visual Question Answering (2018 CVPR)
o VOA SIENMMRME (2o am
* VQA-HAT
o Human Attention in Visual Question Answering: Do Humans and Deep Networks Look at the Same Regions ? (EMNLP
2016)
o IFEARKITHUNZIRNREE -]
* Personality-Captions
o Facebook M IEMEIEM, T 3 X8 217 PMRNE R 5
o htir thu mifacel kresearch/ParlA
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Code List

RLORE (2 MAC ) (SN

WTIvrean. BE.8H

¢ &?E% *R Z .gs AR ithub I8 auEes ;:

LOGN T4 yramic Language Binding in Relational 2020
et S
! Vsl Reasoning A

R e —
*J\ 21N MAC 406 (0 GQAF ) 2018

Memory, Attention and Compostion

paper) X ICLR
o BT 54 (R Learning Dynamics of Astention '
+ W5 trick & e
g Irick F]RE
% 218 e 5810 (¥ 8 GitHub - - Deep Modular Co-Attention Networks for 2015
#3 OpenvQA) Viusal Question Argwering VPR

° ELIRERME

L oS 8L TR L

':8 2 github 618 auee AR

NMN 5570 ( q.‘?h\'_‘n_n.' o) ‘-‘r'\‘:M:a I__‘_
PyTorch {E42a—ARiRiE o s | e T
» Network WALY

O e net() (torch.nn.moudule)

%% GPU 589  (torch.device, T

nn.DataParallel, model.to(device))

az 28
BX M (torch.optim, torch.nn) P ARE Pthub 1 nuEn

EX H (torch.utils.data) V- 51.45(paper R Differenciable First Order Logi Reasoning for -
IAAE) . Vsl Question Arswering ML

VSRS (GPUDIERIE -> TEmes -> itonsas: AR
m 0-> Eﬁ]fﬁﬂ o ﬁ%ﬂfx{-&) ( ) NSM 6317 =1y Neural State Machine e

Trick I]RE MW IR K NS
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Take Home Message
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As long as I am dreaming, believing and doinyg,
I can go anywhere and achieve anything!
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BB 25 : yujing02 @iie.ac.cn

BFFILEZETT: hitps://mmlab-iie.qithub.io/

FoF-F AL fttps: //www.zhihu.com/column/c_1284803871596797952
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