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3. Methodology

Given an image I and a question (), the KB-VQA task
aims to predict an answer A supported by additional knowl-
edge beyond the given visual and textual content. We ac-
cumulate triplet-formed multimodal knowledge to serve as
the external knowledge and directly infer the answer in
an end-to-end mode. Figure * gives detailed illustration
of our model. We first introduce a novel schema of ex-
tracting multimodal knowledge triplets from unstructured
image-question-answer samples based on the pre-trained
vision-language model. Then we propose three objective
losses to learn the triplet embeddings that accurately de-
pict question-attended visual content (head embeddings),
question-desired fact answer (tail embeddings), and the im-
plicit relation between the two (relation embeddings). By
training with both out-domain and in-domain data, our
model accumulates a wide range of multimodal knowledge
and associates the optimal fact for answer prediction.

In the VQA scenario, we define the complex and in-
expressible facts as multimodal knowledge in the form of
triplet, i.e. (h,r,t), where h contains visual content in the
image focused by the question, ¢ is a representation of the
answer given the question-image pair, and r depicts the im-
plicit relationship between £ and ¢ containing multimodal
information. The triplet construction process mainly con-
sists of the following four parts:

Since the pre-trained
vision-language models are strong at modeling the intra-
modal and cross-modal implicit correlations, we first utilize
the pre-trained model LXMERT [ | to encode the question
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and image for further multimodal knowledge triplet extrac-
tion. We apply Faster R-CNN [ | to detect a set of objects
O = {0}, (K =36) in I and represent each object o; by
a visual feature vector f; € R (dy =2048) and a spatial
feature vector b; € ]R”"(rlb =4)asin[ ]. We tokenize a
question (Q using WordPiece [ ] and obtain a sequence of
D tokens. We feed the visual features { f;}, and {b;}/,,
and question tokens into the pre-trained LXMERT, obtain-
ing the visual embeddings of O denoted as V € RX* % (d,,
=768) and the token embeddings denoted as Q € RP* 4,
HEAAEntity EXtFaction] We define the head entity as the
visual object and its context in the image that is most rel-
evant to the question. To this end, we firstly evaluate the
relevance of each object in the image to each token in the
question by computing the question-guided object-question
relevance affinity matrix A as:

A=(W,Q)"(W,V) )

where Wy and Wy, are learned parameters.

Under the guidance of the relevance affinity matrix, we
then select one object in O as the most relevant visual con-
tent to the question. Since the LXMERT models the im-
plicit correlations among all the objects, it is noteworthy
that the selected question-centric object already contains its
context information, which provides indispensable clues for
answering questions that involve multiple objects. Specifi-
cally we compute the row-wise max-pooling on A to eval-
uate the relevance of each object o; to the question as:

a; " =max A, ; ?2)
J

Then hard attention instead soft attention is applied to se-
lect the most relevant object as the head entity based on

K

h= FFN(Eu,-vL) “)

i=1

where v; € V and FEN denotes a feed-forward network
that contains two fully connected layers.
RélatioREXfraction! Different from the relation in tra-
ditional knowledge graph that depicts the first-order predi-
cate independent of specific visual scenario, we define the
relation in multimodal knowledge as the complex implicit
relation between the observed instantiated object and the
corresponding fact answer. Since LXMERT captures the
implicit correlations between the image and the question
via the self-attention mechanism in the hierarchical trans-
formers, we extract the cross-modal representation from the
[CLS] token, and feed it into a FEN layer to obtain the rela-
tion embedding, which is denoted as r.
MEIDERfiyEXFactionWe define the tail entity as the
answer in an image-question-answer sample, which reveals
a specific aspect of facts regarding to the visual object re-
ferred by the question. In the training stage, we set ground
truth answer as the tail entity to learn its representation ¢
from scratch (details in Section ). In the inference stage,
we define the KB-VQA task as a multimodal knowledge
graph completion problem and globally assess the knowl-
edge in our neural multimodal knowledge base to predict
the optimal tail entity as the answer (details in Section * 7).

Knowledge Triplet Representation Learning

3.2. Knowledge Triplet Representation Learning

Since each component within a triplet contains modality-
different and semantic-specific information, we propose
three loss functions to unifiedly learn the triplet represen-
tation in order to bridge the heterogeneous gap as well as
semantic gap. The three losses constrain the triplet repre-
sentation from complementary views: the Triplet TransE
Loss preserves the embedding structure by contrasting pos-
itive and negative triplets. The Triplet Consistency Loss
further forces the three embeddings within a triplet to keep
the strict topological relation, and the Semantic Consistency
Loss maps the embeddings into a common semantic space
for fair comparison among multimodal content.

Triplet TransE Loss. Inspired by the knowledge embed-
ding method TransE [ ] in the traditional knowledge graph
field, we apply TransE-like objective loss as a structure-
preserving constraint in our multimodal scenario. Given
an image-question pair, let AT and A~ denote its sets of
correct (positive) and incorrect (negative) answers, respec-
tively. Let h and r denote the corresponding extracted head
and tail entity representations. We want the distance be-
tween h + 7 and each positive tail t+ € A" to be smaller
than the distance between h + 7 and each negative tail =

£T1‘1\115E= Z Z [7+d(h+r,t+)—d(h+r.t_)]+
tteAtt-eA
(5)

where [-]; £ max(0,-) and d(-,-) denotes the cosine dis-
tance following the settings in [ .

Triplet Consistency Loss. The issue of the above TransE
loss is that once the distance between the positive pairs is
smaller than the negative pairs by margin ~ during training,
the model will stop learning from the triplet. To further push
the embeddings to satisfy the strict topological relation, we
apply Mean Squared Error (MSE) criterion to constrain the
representations on top of each positive triplet as:

L1y = MSE(h + 7 t") (6)

Semantic Consistency Loss. We randomly initialize a
look-up table of tail entities and learn their representations
together with the head and the relation. Each tail entity in
the look-up table T" corresponds to an unique answer in the
training VQA samples. To introduce the semantics of an-
swer in tail representation while narrowing the heteroge-
neous gap between text-formed tail entity and multimodal-
formed head entity and relation, we classify the triplet over
the tail vocabulary and force the model to select the ground-



IRIEER MIREETT AFEE

T

BR#H: vujing02@iie. ac.cn

1RFEFETI: https://mmlab—iie. github. io/course/
FaR2EET1: https://mmlab—iie. github. io/
MFEFL: https://www. zhihu. com/column/c 1284803871596797952

¥ 45 % ERIRARA

INSTITUTE OF INFORMATION ENGINEERING,CAS

University of Chinese Academy of Sciences

[=]


mailto:yujing02@iie.ac.cn
https://mmlab-iie.github.io/

