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Unbiased Scene Grap

Today’s scene graph generation (SGG) task is still
far from practical, mainly due to the severe training
bias, e.g., collapsing diverse human walk on/ sit
on/lay on beach into human on beach. Given
such SGG, the down-stream tasks such as VQA can hardly
infer better scene structures than merely a bag of objects.
However, debiasing in SGG is not trivial because tradi-
tional debiasing methods cannot distinguish between the
good and bad bias, e.g., good context prior (e.g., person
read book rather than eat) and bad long-tailed bias
(e.g., near dominating behind/in front of). Inthis

h Generation from Biased Training
CVPR 2020
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paper, we present a novel SGG framework based on causal» $‘x 7% Ea E % : E% ?& &H’
inference but not the conventional likelihood. We first build

a causal graph for SGG, and perform traditional biased
training with the graph. Then, we propose to draw the
counterfactual causality from the trained graph to infer
the effect from the bad bias, which should be removed. In
particular, we use Total Direct Effect as the proposed fi-
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nal predicate score for unbiased SGG. Note that our frame-

work is agnostic to any SGG model and thus can be widely

applied in the community who seeks unbiased predictions.
By using the proposed Scene Graph Diagnosis toolkit on
the SGG benchmark Visual Genome and several prevailing
models, we observed significant improvements over the pre-
vious state-of-the-art methods.
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Abstract

Fact-based Visual Question Answering (FVQA) re-
quires external knowledge beyond visible content
to answer questions about an image, which is chal-
lenging but indispensable to achieve general VQA.
One limitation of existing FVQA solutions is that
they jointly embed all kinds of information with-
out fine-grained selection, which introduces unex-
pected noises for reasoning the final answer. How
to capture the question-oriented and information-
complementary evidence remains a key challenge
to solve the problem. In this paper, we depict
an image by a multi-modal heterogeneous graph,
which contains multiple layers of information cor-
responding to the visual, semantic and factual fea-
tures. On top of the multi-layer graph representa-
tions, we propose a modality-aware heterogeneous
graph convolutional network to capture evidence
from different layers that is most relevant to the
given question. Specifically, the intra-modal graph
convolution selects evidence from each modality
and cross-modal graph convolution aggregates rel-
evant information across different modalities. By
stacking this process multiple times, our model
performs iterative reasoning and predicts the opti-
mal answer by analyzing all question-oriented ev-
idence. We achieve a new state-of-the-art perfor-
mance on the FVQA task and demonstrate the ef-
fectiveness and interpretability of our model with
extensive experiments. The code is available at
https://github.com/astro-zihao/mucko.

1 Introduction

Visual question answering (VQA) [Antol et al., 2015] is an
attractive research direction aiming to jointly analyze multi-
modal content from images and natural language. Equipped
with the capacities of grounding, reasoning and translating,
a VQA agent is expected to answer a question in natural lan-
guage based on an image. Recent works [Cadene et al., 2019;

*Equal contribution.
fCorresponding author.
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Figure 1: An illustration of our motivation. We represent an im-
age by multi-layer graphs and cross-modal knowledge reasoning is
conducted on the graphs to infer the optimal answer.

Li et al., 2019b; Ben-Younes et al., 2019] have achieved
great success in the VQA problems that are answerable by
solely referring to the visible content of the image. How-
ever, such kinds of models are incapable of answering ques-
tions which require external knowledge beyond what is in the
image. Considering the question in Figure 1, the agent not
only needs to visually localize ‘the red cylinder’, but also to
semantically recognize it as ‘fire hydrant’ and connects the
knowledge that ‘fire hydrant is used for firefighting’. There-
fore, how to collect the question-oriented and information-
complementary evidence from visual, semantic and knowl-
edge perspectives is essential to achieve general VQA.

To advocate research in this direction, [Wang et al., 2018]
introduces the ‘Fact-based’ VQA (FVQA) task for answering
questions by joint analysis of the image and the knowledge
base of facts. The typical solutions for FVQA build a fact
graph with fact triplets filtered by the visual concepts in the
image and select one entity in the graph as the answer. Ex-
isting works [Wang et al., 2017; Wang et al., 2018] parse the
question as keywords and retrieve the supporting-entity only
by keyword matching. This kind of approaches is vulnera-
ble when the question does not exactly mention the visual
concepts (e.g. synonyms and homographs) or the mentioned
information is not captured in the fact graph (e.g. the visual

attribute ‘red’ in Figure 1 may be falsely omitted). To re-
solve these problems, [Narasimhan er al., 2018] introduces
visual information into the fact graph and infers the answer
by implicit graph reasoning under the guidance of the ques-
tion. However, they provide the whole visual information
equally to each graph node by concatenation of the image,
question and entity embeddings. Actually, only part of the
visual content are relevant to the question and a certain entity.
Moreover, the fact graph here is still homogeneous since each
node is represented by a fixed form of image-question-entity
embedding, which limits the model’s flexibility of adaptively
capturing evidence from different modalities.

In this work, we depict an image as a multi-modal hetero-
geneous graph, which contains multiple layers of information
corresponding to different modalities. The proposed model is
focused on Multi-Layer Cross-Modal Knowledge Reasoning
and we name it as Mucko for short. Specifically, we encode
an image by three layers of graphs, where the object appear-
ance and their relationships are kept in the visual layer, the
high-level abstraction for bridging the gaps between visual
and factual information is provided in the semantic layer,
and the corresponding knowledge of facts are supported in
the fact layer. We propose a modality-aware heterogeneous
graph convolutional network to adaptively collect comple-
mentary evidence in the multi-layer graphs. It can be per-
formed by two procedures. First, the Intra-Modal Knowledge
Selection procedure collects question-oriented information
from each graph layer under the guidance of question; Then,
the Cross-Modal Knowledge Reasoning procedure captures
complementary evidence across different layers.

The main contributions of this paper are summarized as
follows: (1) We comprehensively depict an image by a het-
erogeneous graph containing multiple layers of information
based on visual, semantic and knowledge modalities. We
consider these three modalities jointly and achieve significant
improvement over state-of-the-art solutions. (2) We propose a
modality-aware heterogeneous graph convolutional network
to capture question-oriented evidence from different modal-
ities. Especially, we leverage an attention operation in each
convolution layer to select the most relevant evidence for the
given question, and the convolution operation is responsible
for adaptive feature aggregation. (3) We demonstrate good
interpretability of our approach and provide case study in
deep insights. Our model automatically tells which modality
(visual, semantic or factual) and entity have more contribu-
tions to answer the question through visualization of attention
weights and gate values.
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Abstract

Fact-based Visual Question Answering (FVQA) re-
quires external knowledge beyond visible content
to answer questions about an image, which is chal-
lenging but indispensable to achieve general VQA.
One limitation of existing FVQA solutions is that
they jointly embed all kinds of information with-
out fine-grained selection, which introduces unex-
pected noises for reasoning the final answer. How
to capture the question-oriented and information-
complementary evidence remains a key challenge
to solve the problem. In this paper, we depict
an image by a multi-modal heterogeneous graph,
which contains multiple layers of information cor-
responding to the visual, semantic and factual fea-
tures. On top of the multi-layer graph representa-
tions, we propose a modality-aware heterogeneous
graph convolutional network to capture evidence
from different layers that is most relevant to the
given question. Specifically, the intra-modal graph
convolution selects evidence from each modality
and cross-modal graph convolution aggregates rel-
evant information across different modalities. By
stacking this process multiple times, our model
performs iterative reasoning and predicts the opti-
mal answer by analyzing all question-oriented ev-
idence. We achieve a new state-of-the-art perfor-
mance on the FVQA task and demonstrate the ef-
fectiveness and interpretability of our model with
extensive experiments. The code is available at
https://github.com/astro-zihao/mucko.
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Introduction

Visual question answering (VQA) [Antol et al., 2015] is an
attractive research direction aiming to jointly analyze multi-
modal content from images and natural language. Equipped
with the capacities of grounding, reasoning and translating,
a VQA agent is expected to answer a question in natural lan-
guage based on an image. Recent works [Cadene et al., 2019;
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Figure 1: An illustration of our motivation. We represent an im-
age by multi-layer graphs and cross-modal knowledge reasoning is
conducted on the graphs to infer the optimal answer.

Li et al., 2019b; Ben-Younes et al., 2019] have achieved
great success in the VQA problems that are answerable by
solely referring to the visible content of the image. How-
ever, such kinds of models are incapable of answering ques-
tions which require external knowledge beyond what is in the
image. Considering the question in Figure 1, the agent not
only needs to visually localize ‘the red cylinder’, but also to
semantically recognize it as ‘fire hydrant’ and connects the
knowledge that ‘fire hydrant is used for firefighting’. There-
fore, how to collect the question-oriented and information-
complementary evidence from visual, semantic and knowl-
edge perspectives is essential to achieve general VQA.

To advocate research in this direction, [Wang et al., 2018]
introduces the ‘Fact-based’ VQA (FVQA) task for answering
questions by joint analysis of the image and the knowledge
base of facts. The typical solutions for FVQA build a fact
graph with fact triplets filtered by the visual concepts in the
image and select one entity in the graph as the answer. Ex-
isting works [Wang et al., 2017; Wang et al., 2018] parse the
question as keywords and retrieve the supporting-entity only
by keyword matching. This kind of approaches is vulnera-
ble when the question does not exactly mention the visual
concepts (e.g. synonyms and homographs) or the mentioned
information is not captured in the fact graph (e.2. the visual
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